首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12682篇
  免费   1901篇
  国内免费   2894篇
化学   8651篇
晶体学   79篇
力学   1999篇
综合类   13篇
数学   2853篇
物理学   3882篇
  2024年   18篇
  2023年   383篇
  2022年   404篇
  2021年   490篇
  2020年   550篇
  2019年   402篇
  2018年   479篇
  2017年   585篇
  2016年   542篇
  2015年   635篇
  2014年   909篇
  2013年   1067篇
  2012年   1236篇
  2011年   1277篇
  2010年   1054篇
  2009年   956篇
  2008年   910篇
  2007年   950篇
  2006年   959篇
  2005年   625篇
  2004年   479篇
  2003年   303篇
  2002年   310篇
  2001年   327篇
  2000年   269篇
  1999年   241篇
  1998年   140篇
  1997年   132篇
  1996年   77篇
  1995年   107篇
  1994年   84篇
  1993年   87篇
  1992年   72篇
  1991年   78篇
  1990年   69篇
  1989年   41篇
  1988年   53篇
  1987年   45篇
  1986年   39篇
  1985年   31篇
  1984年   21篇
  1983年   10篇
  1982年   9篇
  1981年   14篇
  1980年   2篇
  1979年   1篇
  1976年   1篇
  1971年   1篇
  1957年   2篇
  1936年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
《中国化学快报》2023,34(8):108099
Rosmarinic acid (RA) is promising as a natural and nontoxic food additive. However, many analysis methods for RA generally depend on large instruments and single signals for quantitative detection. A new up-conversion fluorescence, colorimetric and photothermal multi-modal sensing strategy is developed for the quantification of RA. β-cyclodextrin (CD) modified citric acid (Cit) wrapped NaYF4:Yb/Er-Cit-CD (Y:Yb/Er-Cit-CD) up-conversion nanocomposite has been synthesized, which emits green fluorescence at 550 nm under 980 nm near-infrared (NIR) excitation. In the presence of oxidized 3,3′,5,5′-tetramethylbenzidine (oxTMB), the green fluorescence is significantly quenched attributed to the fluorescence inner filter effect (IFE) between oxTMB and Y:Yb/Er-Cit-CD. When RA is intervened, blue oxTMB is reduced to colorless 3,3′,5,5′-tetramethylbenzidine (TMB) inducing the recovery of up-conversion fluorescence. At the same time, colorimetric and photothermal signals readout can be easily achieved thanks to the color indication and photothermal effect of the oxTMB. The constructed Y:Yb/Er-Cit-CD/oxTMB sensor displays high sensitivity, visibility and simplicity for RA, and the limits of detection (LOD) for fluorescence, colorimetric and photothermal were 0.004 µmol/L, 0.036 µmol/L and 0.043 µmol/L, respectively. This sensing system is successfully performed for the detection of RA in food samples.  相似文献   
82.
83.
84.
Metallic Na is a promising metal anode for large-scale energy storage. Nevertheless, unstable solid electrolyte interphase (SEI) and uncontrollable Na dendrite growth lead to disastrous short circuit and poor cycle life. Through phase field and ab initio molecular dynamics simulation, we first predict that the sodium bromide (NaBr) with the lowest Na ion diffusion energy barrier among sodium halogen compounds (NaX, X=F, Cl, Br, I) is the ideal SEI composition to induce the spherical Na deposition for suppressing dendrite growth. Then, 1,2-dibromobenzene (1,2-DBB) additive is introduced into the common fluoroethylene carbonate-based carbonate electrolyte (the corresponding SEI has high mechanical stability) to construct a desirable NaBr-rich stable SEI layer. When the Na||Na3V2(PO4)3 cell utilizes the electrolyte with 1,2-DBB additive, an extraordinary capacity retention of 94 % is achieved after 2000 cycles at a high rate of 10 C. This study provides a design philosophy for dendrite-free Na metal anode and can be expanded to other metal anodes.  相似文献   
85.
Rational design of polymer structures at the molecular level promotes the iteration of high-performance photocatalyst for sustainable photocatalytic hydrogen peroxide (H2O2) production from oxygen and water, which also lays the basis for revealing the reaction mechanism. Here we report a benzoxazine-based m-aminophenol-formaldehyde resin (APFac) polymerized at ambient conditions, exhibiting superior H2O2 yield and long-term stability to most polymeric photocatalysts. Benzoxazine structure was identified as the crucial photocatalytic active segment in APFac. Favorable adsorption of oxygen/intermediates on benzoxazine structure and commendable product selectivity accelerated the reaction kinetically in stepwise single-electron oxygen reduction reaction. The proposed benzoxazine-based phenolic resin provides the possibility of production in batches and industrial application, and sheds light on the de novo design and analysis of metal-free polymeric photocatalysts.  相似文献   
86.
Sulfide electrolytes with high ionic conductivities are one of the most highly sought for all-solid-state lithium batteries (ASSLBs). However, the non-negligible electronic conductivities of sulfide electrolytes (≈10−8 S cm−1) lead to electron smooth transport through the sulfide electrolyte pellets, resulting in Li dendrite directly depositing at the grain boundaries (GBs) and serious self-discharge. Here, a grain-boundary electronic insulation (GBEI) strategy is proposed to block electron transport across the GBs, enabling Li−Li symmetric cells with 30 times longer cycling life and Li−LiCoO2 full cells with three times lower self-discharging rate than pristine sulfide electrolytes. The Li−LiCoO2 ASSLBs deliver high capacity retention of 80 % at 650 cycles and stable cycling performance for over 2600 cycles at 0.5 mA cm−2. The innovation of the GBEI strategy provides a new direction to pursue high-performance ASSLBs via tailoring the electronic conductivity.  相似文献   
87.
Atomically dispersed Fe was designed on TiO2 and explored as a Janus electrocatalyst for both nitrogen oxidation reaction (NOR) and nitrogen reduction reaction (NRR) in a two-electrode system. Pulsed electrochemical catalysis (PE) was firstly involved to inhibit the competitive hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Excitingly, an unanticipated yield of 7055.81 μmol h−1 g−1cat. and 12 868.33 μmol h−1 g−1cat. were obtained for NOR and NRR at 3.5 V, respectively, 44.94 times and 7.8 times increase in FE than the conventional constant voltage electrocatalytic method. Experiments and density functional theory (DFT) calculations revealed that the single-atom Fe could stabilize the oxygen vacancy, lower the energy barrier for the vital rupture of N≡N, and result in enhanced N2 fixation performance. More importantly, PE could effectively enhance the N2 supply by reducing competitive O2 and H2 agglomeration, inhibit the electrocatalytic by-product formation for longstanding *OOH and *H intermediates, and promote the non-electrocatalytic process of N2 activation.  相似文献   
88.
Heterostructured oxides with versatile active sites, as a class of efficient catalysts for CO2 electrochemical reduction (CO2ER), are prone to undergo structure reconstruction under working conditions, thus bringing challenges to understanding the reaction mechanism and rationally designing catalysts. Herein, we for the first time elucidate the structural reconstruction of CuO/SnO2 under electrochemical potentials and reveal the intrinsic relationship between CO2ER product selectivity and the in situ evolved heterostructures. At −0.85 VRHE, the CuO/SnO2 evolves to Cu2O/SnO2 with high selectivity to HCOOH (Faradaic efficiency of 54.81 %). Mostly interestingly, it is reconstructed to Cu/SnO2-x at −1.05 VRHE with significantly improved Faradaic efficiency to ethanol of 39.8 %. In situ Raman spectra and density functional theory (DFT) calculations reveal that the synergetic absorption of *COOH and *CHOCO intermediates at the interface of Cu/SnO2-x favors the formation of *CO and decreases the energy barrier of C−C coupling, leading to high selectivity to ethanol.  相似文献   
89.
The emergence of two-dimensional conjugated metal–organic frameworks (2D c-MOFs) with pronounced electrical properties (e.g., high conductivity) has provided a novel platform for efficient energy storage, sensing, and electrocatalysis. Nevertheless, the limited availability of suitable ligands restricts the number of available types of 2D c-MOFs, especially those with large pore apertures and high surface areas are rare. Herein, we develop two new 2D c-MOFs (HIOTP-M, M=Ni, Cu) employing a large p-π conjugated ligand of hexaamino-triphenyleno[2,3-b:6,7-b′:10,11-b′′]tris[1,4]benzodioxin (HAOTP). Among the reported 2D c-MOFs, HIOTP-Ni exhibits the largest pore size of 3.3 nm and one of the highest surface areas (up to 1300 m2 g−1). As an exemplary application, HIOTP-Ni has been used as a chemiresistive sensing material and displays high selective response (405 %) and a rapid response (1.69 min) towards 10 ppm NO2 gas. This work demonstrates significant correlation linking the pore aperture of 2D c-MOFs to their sensing performance.  相似文献   
90.
Mimicking the structures and functions of cells to create artificial organelles has spurred the development of efficient strategies for production of hollow nanoreactors with biomimetic catalytic functions. However, such structure are challenging to fabricate and are thus rarely reported. We report the design of hollow nanoreactors with hollow multishelled structure (HoMS) and spatially loaded metal nanoparticles. Starting from a molecular-level design strategy, well-defined hollow multishelled structure phenolic resins (HoMS-PR) and carbon (HoMS-C) submicron particles were accurately constructed. HoMS-C serves as an excellent, versatile platform, owing to its tunable properties with tailored functional sites for achieving precise spatial location of metal nanoparticles, internally encapsulated (Pd@HoMS-C) or externally supported (Pd/HoMS-C). Impressively, the combination of the delicate nanoarchitecture and spatially loaded metal nanoparticles endow the pair of nanoreactors with size–shape-selective molecular recognition properties in catalytic semihydrogenation, including high activity and selectivity of Pd@HoMS-C for small aliphatic substrates and Pd/HoMS-C for large aromatic substrates. Theoretical calculations provide insight into the pair of nanoreactors with distinct behaviors due to the differences in energy barrier of substrate adsorption. This work provides guidance on the rational design and accurate construction of hollow nanoreactors with precisely located active sites and a finely modulated microenvironment by mimicking the functions of cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号