首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Designing polymeric photocatalysts at the molecular level to modulate the photogenerated charge behavior is a promising and challenging strategy for efficient hydrogen peroxide (H2O2) photosynthesis. Here, we introduce electron-deficient 1,4-dihydroxyanthraquinone (DHAQ) into the framework of resorcinol-formaldehyde (RF) resin, which modulates the donor/acceptor ratio from the perspective of molecular design for promoting the charge separation. Interestingly, H2O2 can be produced via oxygen reduction and water oxidation pathways, verified by isotopic labeling and in situ characterization techniques. Density functional theory (DFT) calculations elucidate that DHAQ can reduce the energy barrier for H2O2 production. RF-DHAQ exhibits excellent overall photosynthesis of H2O2 with a solar-to-chemical conversion (SCC) efficiency exceeding 1.2 %. This work opens a new avenue to design polymeric photocatalysts at the molecular level for high-efficiency artificial photosynthesis.  相似文献   

2.
《中国化学快报》2023,34(12):108784
Artificial photocatalysis offers a promising strategy to sustainably produce hydrogen peroxide (H2O2) that is one of the most valuable multifunctional chemicals. Among various photocatalysts, polymeric carbon nitride (pCN) has drawn continuous attention in non-sacrificial H2O2 production. However, the poor activity of half reactions, i.e., the oxygen reduction reaction (ORR) and water oxidation reaction (WOR), greatly restricts the efficiency of photocatalytic H2O2 production. In this highlight, we discuss the significant advances in molecular engineering of carbon nitrides for H2O2 photosynthesis and the importance of the deep understanding of the photocatalysis process for rational design and reaction pathways of organic conjugated polymers to address the growing H2O2 demand. Furthermore, we summarize the emerging applications of photocatalytic H2O2 productions beyond energy and environment.  相似文献   

3.
Polymeric carbon nitride modified with selected heteroatom dopants was prepared and used as a model photocatalyst to identify and understand the key mechanisms required for efficient photoproduction of H2O2 via selective oxygen reduction reaction (ORR). The photochemical production of H2O2 was achieved at a millimolar level per hour under visible‐light irradiation along with 100 % apparent quantum yield (in 360–450 nm region) and 96 % selectivity in an electrochemical system (0.1 V vs. RHE). Spectroscopic analysis in spatiotemporal resolution and theoretical calculations revealed that the synergistic association of alkali and sulfur dopants in the polymeric matrix promoted the interlayer charge separation and polarization of trapped electrons for preferable oxygen capture and reduction in ORR kinetics. This work highlights the key features that are responsible for controlling the photocatalytic activity and selectivity toward the two‐electron ORR, which should be the basis of further development of solar H2O2 production.  相似文献   

4.
Solar-driven selective oxygen reduction reaction on polymeric carbon nitride framework is one of the most promising approaches toward sustainable H2O2 production. Potassium poly(heptazine imide) (PHI), with regular metal sites in the framework and favorable crystalline structure, is highly active for photocatalytic selective 2e oxygen reduction to produce H2O2. By introducing NH4Cl into the eutectic KCl-LiCl salt mixture, the PHI framework exhibits a remarkable performance for photocatalytic production of H2O2, for example, a record high H2O2 photo-production rate of 29.5 μmol h−1 mg−1. The efficient photocatalytic performance is attributed to the favorable properties of the new PHI framework, such as improved porosity, negatively shifted LUMO position, enhanced exciton dissociation and charges migration properties. A mechanistic investigation by quenching and electron spin resonance technique reveals the critical role of superoxide radicals for the formation singlet oxygen, and the singlet oxygen is one of the critical intermediates towards the formation of the H2O2 by proton extraction from the ethanol.  相似文献   

5.
Polymeric carbon nitride modified with selected heteroatom dopants was prepared and used as a model photocatalyst to identify and understand the key mechanisms required for efficient photoproduction of H2O2 via selective oxygen reduction reaction (ORR). The photochemical production of H2O2 was achieved at a millimolar level per hour under visible-light irradiation along with 100 % apparent quantum yield (in 360–450 nm region) and 96 % selectivity in an electrochemical system (0.1 V vs. RHE). Spectroscopic analysis in spatiotemporal resolution and theoretical calculations revealed that the synergistic association of alkali and sulfur dopants in the polymeric matrix promoted the interlayer charge separation and polarization of trapped electrons for preferable oxygen capture and reduction in ORR kinetics. This work highlights the key features that are responsible for controlling the photocatalytic activity and selectivity toward the two-electron ORR, which should be the basis of further development of solar H2O2 production.  相似文献   

6.
Hydrogen peroxide (H2O2) has received increasing attention because it is not only a mild and environmentally friendly oxidant for organic synthesis and environmental remediation but also a promising new liquid fuel. The production of H2O2 by photocatalysis is a sustainable process, since it uses water and oxygen as the source materials and solar light as the energy. Encouraging processes have been developed in the last decade for the photocatalytic production of H2O2. In this Review we summarize research progress in the development of processes for the photocatalytic production of H2O2. After a brief introduction emphasizing the superiorities of the photocatalytic generation of H2O2, the basic principles of establishing an efficient photocatalytic system for generating H2O2 are discussed, highlighting the advanced photocatalysts used. This Review is concluded by a brief summary and outlook for future advances in this emerging research field.  相似文献   

7.
Solar-driven synthesis of hydrogen peroxide (H2O2) from water and air provides a low-cost and eco-friendly alternative route to the traditional anthraquinone method. Herein, four thiazole-based conjugated polymers (Tz-CPs: TTz , BTz , TBTz and BBTz ) are synthesized via aldimine condensation. BBTz exhibits the highest H2O2 production rate of 7274 μmol g−1 h−1 in pure water. Further, the reaction path is analyzed by electron paramagnetic resonance (EPR), in situ diffuse reflectance infrared Fourier transform (DRIFT) and theoretical calculation, highlighting the prominent role of singlet oxygen (1O2). The generation of 1O2 occurs through the oxidation of superoxide radical (⋅O2) and subsequent conversion into endoperoxides via [4+2] cycloaddition over BBTz , which promotes charge separation and reduces the barrier for H2O2 production. This work provides new insight into the mechanism of photocatalytic O2 reduction and the molecular design of superior single-polymer photocatalysts.  相似文献   

8.
以钛粉、钽粉为原料,炭黑作为反应性模板,通过熔盐法在炭黑表面原位生长了TaTiC_2纳米碳化物涂层,并以所得TaTiC_2/C复合物为碳化物前驱体,再经可控氧化制备出中空Ta_2O_5/TiO_2复合光催化剂。采用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、紫外-可见(UV-Vis)漫反射(DRS)及N2物理吸附等手段对所制备的光催化剂进行形貌、显微结构及孔结构表征。以高压汞灯为紫外光源,以亚甲基蓝为目标降解物,通过光催化降解实验评价中空Ta_2O_5/TiO_2复合光催化剂的光催化活性。结果表明,熔盐法生长碳化物涂层厚度均匀(20~30 nm),碳化物主要以TaTiC_2晶相存在且具有纳米级的颗粒尺寸。中空Ta_2O_5/TiO_2复合光催化剂同时具有200 nm左右的中空大孔结构及壳层10 nm左右的介孔结构。中空大孔和介孔的存在提高了所制备催化剂对亚甲基蓝的吸附能力。此外,TiO_2与Ta2O5通过电子能带结构的耦合,有效提高了光生电子和空穴的分离效率,从而显著提高了光催化活性。nTi∶nTa=2.5∶1.5时,相应的中空Ta_2O_5/TiO_2复合光催化剂表现出最佳的光催化活性,对亚甲基蓝的紫外光催化降解率高达97%。  相似文献   

9.
以钛粉、钽粉为原料,炭黑作为反应性模板,通过熔盐法在炭黑表面原位生长了TaTiC2纳米碳化物涂层,并以所得TaTiC2/C复合物为碳化物前驱体,再经可控氧化制备出中空Ta2O5/TiO2复合光催化剂。采用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、紫外-可见(UV-Vis)漫反射(DRS)及N2物理吸附等手段对所制备的光催化剂进行形貌、显微结构及孔结构表征。以高压汞灯为紫外光源,以亚甲基蓝为目标降解物,通过光催化降解实验评价中空Ta2O5/TiO2复合光催化剂的光催化活性。结果表明,熔盐法生长碳化物涂层厚度均匀(20~30 nm),碳化物主要以TaTiC2晶相存在且具有纳米级的颗粒尺寸。中空Ta2O5/TiO2复合光催化剂同时具有200 nm左右的中空大孔结构及壳层10 nm左右的介孔结构。中空大孔和介孔的存在提高了所制备催化剂对亚甲基蓝的吸附能力。此外,TiO2与Ta2O5通过电子能带结构的耦合,有效提高了光生电子和空穴的分离效率,从而显著提高了光催化活性。nTinTa=2.5∶1.5时,相应的中空Ta2O5/TiO2复合光催化剂表现出最佳的光催化活性,对亚甲基蓝的紫外光催化降解率高达97%。  相似文献   

10.
Nitrogen-heterocycle-based covalent organic frameworks (COFs) are considered promising candidates for the overall photosynthesis of hydrogen peroxide (H2O2). However, the effects of the relative nitrogen locations remain obscured and photocatalytic performances of COFs need to be further improved. Herein, a collection of COFs functionalized by various diazines including pyridazine, pyrimidine, and pyrazine have been judiciously designed and synthesized for photogeneration of H2O2 without sacrificial agents. Compared with pyrimidine and pyrazine, pyridazine embedded in TpDz tends to stabilize endoperoxide intermediate species, leading toward the more efficient direct 2e- oxygen reduction reaction (ORR) pathway. Benefiting from the effective electron-hole separation, low charge transfer resistance, and high-efficiency ORR pathway, an excellent production rate of 7327 μmol g−1 h−1 and a solar-to-chemical conversion (SCC) value of 0.62 % has been achieved by TpDz, which ranks one of the best COF-based photocatalysts. This work might shed fresh light on the rational design of functional COFs targeting photocatalysts in H2O2 production.  相似文献   

11.
Benefiting from the excellent structural tunability, robust framework, ultrahigh porosity, and rich active sites, covalent organic frameworks (COFs) are widely recognized as promising photocatalysts in chemical conversions, and emerged in the hydrogen peroxide (H2O2) photosynthesis in 2020. H2O2, serving as an environmental-friendly oxidant and a promising liquid fuel, has attracted increasing researchers to explore its potential. Over the past few years, numerous COFs-based photocatalysts are developed with encouraging achievements in H2O2 production, whereas no comprehensive review articles exist to summarize this specific and significant area. Herein we provide a systematic overview of the advances and challenges of COFs in photocatalytic H2O2 production. We first introduce the priorities of COFs in H2O2 photosynthesis. Then, various strategies to improve COFs photocatalytic efficiency are discussed. The perspective and outlook for future advances of COFs in this emerging field are finally offered. This timely review will pave the way for the development of highly efficient COFs photocatalysts for practical production of value-added chemicals not limited to H2O2.  相似文献   

12.
Solar energy‐driven conversion of CO2 into fuels with H2O as a sacrificial agent is a challenging research field in photosynthesis. Herein, a series of crystalline porphyrin‐tetrathiafulvalene covalent organic frameworks (COFs) are synthesized and used as photocatalysts for reducing CO2 with H2O, in the absence of additional photosensitizer, sacrificial agents, and noble metal co‐catalysts. The effective photogenerated electrons transfer from tetrathiafulvalene to porphyrin by covalent bonding, resulting in the separated electrons and holes, respectively, for CO2 reduction and H2O oxidation. By adjusting the band structures of TTCOFs, TTCOF‐Zn achieved the highest photocatalytic CO production of 12.33 μmol with circa 100 % selectivity, along with H2O oxidation to O2. Furthermore, DFT calculations combined with a crystal structure model confirmed the structure–function relationship. Our work provides a new sight for designing more efficient artificial crystalline photocatalysts.  相似文献   

13.
The effective conversion of carbon dioxide (CO2) and nitrogen (N2) into urea by photocatalytic reaction under mild conditions is considered to be a more environmentally friendly and promising alternative strategies. However, the weak adsorption and activation ability of inert gas on photocatalysts has become the main challenge that hinder the advancement of this technique. Herein, we have successfully established mesoporous CeO2-x nanorods with adjustable oxygen vacancy concentration by heat treatment in Ar/H2 (90 % : 10 %) atmosphere, enhancing the targeted adsorption and activation of N2 and CO2 by introducing oxygen vacancies. Particularly, CeO2-500 (CeO2 nanorods heated treatment at 500 °C) revealed high photocatalytic activity toward the C−N coupling reaction for urea synthesis with a remarkable urea yield rate of 15.5 μg/h. Besides, both aberration corrected transmission electron microscopy (AC-TEM) and Fourier transform infrared (FT-IR) spectroscopy were used to research the atomic surface structure of CeO2-500 at high resolution and to monitor the key intermediate precursors generated. The reaction mechanism of photocatalytic C−N coupling was studied in detail by combining Density Functional Theory (DFT) with specific experiments. We hope this work provides important inspiration and guiding significance towards highly efficient photocatalytic synthesis of urea.  相似文献   

14.
H2O2 is a significant chemical widely utilized in the environmental and industrial fields, with growing global demand. Without sacrificial agents, simultaneous photocatalyzed H2O2 synthesis through the oxygen reduction reaction (ORR) and water oxidation reaction (WOR) dual channels from seawater is green and sustainable but still challenging. Herein, two novel thiophene-containing covalent organic frameworks (TD-COF and TT-COF) were first constructed and served as catalysts for H2O2 synthesis via indirect 2e ORR and direct 2e WOR channels. The photocatalytic H2O2 production performance can be regulated by adjusting the N-heterocycle modules (pyridine and triazine) in COFs. Notably, with no sacrificial agents, just using air and water as raw materials, TD-COF exhibited high H2O2 production yields of 4060 μmol h−1 g−1 and 3364 μmol h−1 g−1 in deionized water and natural seawater, respectively. Further computational mechanism studies revealed that the thiophene was the primary photoreduction unit for ORR, while the benzene ring (linked to the thiophene by the imine bond) was the central photooxidation unit for WOR. The current work exploits thiophene-containing COFs for overall photocatalytic H2O2 synthesis via ORR and WOR dual channels and provides fresh insight into creating innovative catalysts for photocatalyzing H2O2 synthesis.  相似文献   

15.
《中国化学快报》2021,32(11):3463-3468
Ultrabroad spectral absorption is required for semiconductor photocatalysts utilized for solar-to-chemical energy conversion. The light response range can be extended by element doping, but the photocatalytic performance is generally not enhanced correspondingly. Here we present a solid alkali activation strategy to synthesize near-infrared (NIR) light-activated carbon-doped polymeric carbon nitride (A-cPCN) by combining the copolymerization of melamine and 1,3,5-trimesic acid. The prepared A-cPCN is highly crystalline with a narrowed bandgap and enhanced efficiency in the separation of photogenerated electrons and holes. Under irradiation with NIR light (780 nm ≥ λ ≥ 700 nm), A-cPCN shows an excellent photocatalytic activity for H2 generation from water with rate of 165 µmol g−1 h−1, and the photo-redox activity for H2O2 production (109 µmol g−1 h−1) from H2O and O2, whereas no observed photocatalytic activity over pure PCN. The NIR photocatalytic activity is due to carbon doping, which leads to the formation of an interband level, and the alkali activation that achieved shrinking the transfer distance of photocarriers. The current synergistic strategy may open insights to fabricate other carbon-nitrogen-based photocatalysts for enhanced solar energy capture and conversion.  相似文献   

16.
《中国化学快报》2022,33(12):5200-5207
The matched energy band structure and efficient carrier separation efficiency are the keys to heterogeneous photocatalytic reactions. A novel organic/inorganic step scheme (S-scheme) heterojunction PDI-Urea/BiOBr composite photocatalyst was constructed by simple solvothermal reaction combined with in-situ growth strategy. The composite photocatalyst not only has high chemical stability, but also can generate and accumulate a large number of active species (h+, ?O2?, ?OH, H2O2). PDI-Urea/BiOBr showed higher photocatalytic activity for the degradation of antibiotic such as ofloxacin (OFLO), tetracycline (TC) and the production of H2O2 in the spectral range of 400–800 nm. The apparent rate constant of 15% PDI-Urea/BiOBr for photocatalytic degradation of TC (or OFLO) was 2.7 (or 2.5) times that of pure BiOBr and 1.7 (or 1.8) times that of pure PDI-Urea. The H2O2 evolution rate of 15% PDI-Urea/BiOBr was 2.5 times that of PDI-Urea and 1.5 times that of BiOBr, respectively. This work has formed a mature S-scheme heterojunction design thought and method, which offers new visions for the development of heterogeneous photocatalysts.  相似文献   

17.
《中国化学快报》2021,32(10):3128-3132
Low-efficiency charge transfer is a critical factor to limit the photocatalytic H2 evolution activity of semiconductor photocatalysts. The interface design is a promising approach to achieve high charge-transfer efficiency for photocatalysts. Herein, a new 2D/2D atomic double-layer WS2/Nb2O5 shell/core photocatalyst (DLWS/Nb2O5) is designed. The atom-resolved HAADF-STEM results unravel the presence of an unusual 2D/2D shell/core interface in DLWS/Nb2O5. Taking advantage of the advanced femtosecond-resolved ultrafast TAS spectra, the average lifetime of charge carriers for DLWS/Nb2O5 (180.97 ps) is considerably shortened as compared to that of Nb2O5 (230.50 ps), strongly indicating that the 2D/2D shell/core interface enables DLWS/Nb2O5 to achieve ultrafast charge transfer from Nb2O5 to atomic double-layer WS2, thus yielding a high photocatalytic H2 evolution rate of 237.6 μmol/h, up to 10.8 times higher than that of pure Nb2O5 nanosheet. This study will open a new window for the development of high-efficient photocatalytic systems through the interface design.  相似文献   

18.
Hydrogen peroxide (H2O2) is a mild and green oxidant widely employed in organic syntheses, medical sector, disinfection, pulp bleaching, environmental remediation and biological processes. However, its production via the expensive, multistep and energy intensive anthraquinone process renders it less sustainable. Photocatalysis is a viable, sustainable and promising strategy to produce H2O2 from green sources: water and molecular O2. This article presents key developments of photocatalytic H2O2 generation using gold (Au) nanoparticles supported on semiconductor photocatalysts. Several photocatalytic systems containing Au nanoparticles and the roles of Au nanoparticles in enhancing photocatalytic H2O2 generation including increasing the visible light absorption, facilitating the charge carrier separation and transfer, and as catalytic active sites are discussed. Factors defining the photocatalytic activity such as the effects of Au particle size and loading, localised surface plasmon resonance, mixed-gold component, and the design of photocatalysts are reviewed. Finally, the challenges and prospects for further developments of Au photocatalysis in sustainable H2O2 synthesis as well as other related applications are highlighted.  相似文献   

19.
Covalent organic frameworks (COFs) are highly desirable for achieving high-efficiency overall photosynthesis of hydrogen peroxide (H2O2) via molecular design. However, precise construction of COFs toward overall photosynthetic H2O2 remains a great challenge. Herein, we report the crystalline s-heptazine-based COFs (HEP-TAPT-COF and HEP-TAPB-COF) with separated redox centers for efficient H2O2 production from O2 and pure water. The spatially and orderly separated active sites in HEP-COFs can efficiently promote charge separation and enhance photocatalytic H2O2 production. Compared with HEP-TAPB-COF, HEP-TAPT-COF exhibits higher H2O2 production efficiency for integrating dual O2 reduction active centers of s-heptazine and triazine moieties. Accordingly, HEP-TAPT-COF bearing dual O2 reduction centers exhibits a remarkable solar-to-chemical energy efficiency of 0.65 % with a high apparent quantum efficiency of 15.35 % at 420 nm, surpassing previously reported COF-based photocatalysts.  相似文献   

20.
A new series of donor-acceptor (D-A)-type semiconductive polymers were generated by the integration of electron-deficient alkyl chain anchored triazole (TA) moieties and electron-rich pyrene units into the polymer skeleton. The polymer series demonstrated satisfactory light-harvesting ability and suitable band gaps. In the series, polymer P-TAME benefits from a minimized exciton binding energy, strongest D-A interaction, and favorable hydrophilicity, affording an outstanding photocatalytic H2 evolution rate of ca. 100 μmol h−1 (10 mg polymer, AQY420 nm=8.9 %) and H2O2 production rate of ca. 190 μmol h−1 (20 mg polymer) under visible-light irradiation, which is superior to most currently reported polymers. All polymers in the series can mediate water oxidation reactions to evolve O2. Thus, these TA-based polymers open up a new avenue toward tailor-made efficient photocatalysts with broad photocatalytic activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号