首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7325篇
  免费   2635篇
  国内免费   6358篇
化学   10048篇
晶体学   684篇
力学   593篇
综合类   170篇
数学   73篇
物理学   4750篇
  2024年   60篇
  2023年   304篇
  2022年   366篇
  2021年   463篇
  2020年   378篇
  2019年   515篇
  2018年   335篇
  2017年   509篇
  2016年   525篇
  2015年   561篇
  2014年   1132篇
  2013年   991篇
  2012年   848篇
  2011年   917篇
  2010年   904篇
  2009年   915篇
  2008年   916篇
  2007年   753篇
  2006年   892篇
  2005年   849篇
  2004年   704篇
  2003年   664篇
  2002年   474篇
  2001年   387篇
  2000年   246篇
  1999年   242篇
  1998年   130篇
  1997年   127篇
  1996年   65篇
  1995年   62篇
  1994年   25篇
  1993年   16篇
  1992年   18篇
  1991年   8篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   9篇
排序方式: 共有10000条查询结果,搜索用时 28 毫秒
71.
阳极氧化法制备具有纳米多孔结构的阳极氧化铁膜因其潜在的应用价值而倍受关注。然而,在阳极氧化过程中多孔结构的形成机制至今尚不清楚。本文结合电流密度-电位响应(I-V曲线)及法拉第定律的推导,分析了形成纳米多孔阳极氧化铁膜的过程中阳极电流的组成。结果表明,离子电流(导致离子迁移形成氧化物)和电子电流(导致析出氧气)共同组成阳极电流,并且纳米多孔阳极氧化铁膜的形成与两种电流的占比相关。分段式氧化物之间的空腔以及在阳极氧化初期纳米孔道上覆盖的致密膜,表明氧气泡可能是从氧化膜内部析出。此时,阳离子和阴离子绕过作为模具的氧气泡实现传质,最终导致纳米多孔结构的形成。此外,在阳极氧化铁膜形貌演变过程中,氧气泡不断向外溢出会使表面氧化物被冲破,导致表面孔径不断增大。  相似文献   
72.
在河水与海水的交界处实现渗透能提取与捕获是解决未来能源危机的重要方式之一. 渗透能因为储量大, 容易获取以及绿色可持续的优势受到广泛关注. 反向电渗析技术是一种能够有效捕获渗透能的方法之一, 目前已经得到了深入的研究与发展. 离子交换膜是反向电渗析技术转换渗透能的关键组件, 其性能的优异程度决定能量转换效率的高低. 常见的膜材料主要是高分子聚合物及其改性化合物, 最近一些二维材料如石墨烯、 氧化石墨烯、 二硫化钼、 各种框架材料及其改性复合物因优异的选择性离子传输、 纳米级通道、 丰富的表面功能基团以及可修饰性成为捕获渗透能的重要膜材料. 本文综合评述了二维材料作为离子传输通道的类型以及相应的传输机理; 例举了二维材料及其复合物的设计方案和在渗透能转换方面的具体应用; 最后提出了目前二维材料在渗透能转换领域中面临的挑战以及未来的发展方向.  相似文献   
73.
《Science》杂志最近刊发了吉林大学刘堃团队关于手性纳米材料研究的重要进展: 通过超分子作用诱导金纳米棒与人胰岛淀粉样多肽之间共组装, 构筑具有类似于手性液晶结构的纳米螺旋超结构. 与单独的金纳米棒相比, 长程有序的纳米螺旋结构的手性各向异性因子(g-factor)提高了4600倍, 高达0.12. 该工作在液晶与手性无机纳米结构间建立了联系, 为构筑有机-无机光学活性结构提供了统一的设计原则, 并为淀粉样类疾病药物在复杂生物介质中的筛选开发了新方法.  相似文献   
74.
以萘为碳源, 采用MgO模板诱导耦合KOH裁剪技术制备了相互连接的多孔碳纳米囊(ICNC). 结果表明所制备的ICNC2具有大的比表面积(1811 m2/g)、 高的压实密度(1.38 g/cm3)和微孔孔容含量(58.93%). 在对称的超级电容器(SC)中, ICNC2电极的体积比容在不同电流密度下分别高达420.8 F/cm3(0.069 A/cm3)和315 F/cm3(27.6 A/cm3), 容量保持率为74.82%. 在38 W/L功率密度下, ICNC2基SC的体积能量密度为14.6 W?h/L. 经过20000次循环后, 其体积比容仅衰减1.4%, 库伦效率为99.1%, 为从萘基小分子制备储能用功能碳材料提供了一种可行的方法.  相似文献   
75.
通过后合成修饰方法(PSM)构筑了空心纳米球(Void@UiO-66-Ⅰ)和实心块(UiO-66-Ⅰ) 2种形貌的季铵盐功能化UiO-66-NH2(Zr), 得到兼具酸碱活性位点和氢键给体的新型功能化金属-有机框架材料. 通过一系列表征证明2种催化剂的成功合成, 并将它们用于催化转化CO2和氧化苯乙烯的环加成反应. 由于Void@UiO-66-Ⅰ催化剂的季铵盐部分含有大量的羟基和卤素阴离子, 可以通过氢键和亲核攻击与环氧化合物连接, 诱导环氧化合物开环, 促使反应顺利进行, 且催化剂的中空结构有利于物质进出催化剂, 起到加快反应速率的作用, 使得该催化剂在CO2与氧化苯乙烯环加成反应中表现出比实心块UiO-66-Ⅰ催化剂更好的催化性能. Void@UiO-66-Ⅰ催化剂在120 ℃, CO2压力为1.2 MPa, 反应时间为6 h, 无溶剂和助催化剂的反应条件下, 碳酸苯乙烯酯的收率和选择性分别为85.5%和95%.  相似文献   
76.
贵金属纳米材料在纳米尺度具有独特的光学、 电学性质及优异的催化性能, 是一类重要的功能纳米材料. 基于贵金属材料的纳米酶研究是贵金属纳米材料在生物医学领域的一个前沿研究方向. 贵金属基纳米酶具有特殊的光学性质、 较好的化学稳定性、 可调控的类酶活性及良好的生物相容性, 是目前纳米生物医学领域的热点研究材料. 本文总结了贵金属基纳米酶的活性种类、 活性机理、 活性调控以及在生物医学等领域的潜在应用.  相似文献   
77.
采用原位限域生长策略制备了一系列有序介孔碳负载的超小MoO3纳米颗粒复合物(OMC-US-MoO3). 其中, 有序介孔碳被用作基质来原位限域MoO3纳米晶的生长. 依此方法制备的MoO3纳米晶具有超小的晶粒尺寸(<5 nm), 并在介孔碳骨架内具有良好的分散度. 制得的OMC-US-MoO3复合物具有可调的比表面积(428~796 m2/g)、 孔容(0.27~0.62 cm3/g)、 MoO3质量分数(4%~27%)和孔径(4.6~5.7 nm). 当MoO3纳米晶的质量分数为7%时, 所得样品OMC-US-MoO3-7具有最大的孔径、 最小的孔壁厚度和最规整的介观结构. 该样品作为催化剂时, 表现出优异的环辛烯选择性氧化性能.  相似文献   
78.
氧空位是材料缺陷工程的重要组成. 基于光生氧空位的直接热利用, 实现纯水分解制氢的光热耦合实验, 被认为是太阳能综合利用的有效途径. 以多种制备方法合成的TiO2纳米材料为基础, 研究了多种形貌纳米TiO2及其Fe掺杂改性材料的光热耦合反应能力. 通过高分辨透射电子显微镜(HRTEM)、 X射线衍射(XRD)和电子顺磁共振(EPR)对晶体特征进行表征, 利用漫反射光谱(DRS)、 光致发光(PL)和三电极测试法表征了材料的性能, 并结合密度泛函理论(DFT)计算了产氢反应路径. 研究结果表明, 溶胶-凝胶法制备的纳米颗粒相比水热法制备的纳米片及纳米线, 体相内缺陷较多, 载流子强度高, 光热耦合产氢效果较差. Fe掺杂改性扩展了光响应, 增强了载流子分离和寿命, 降低了电子传输阻抗, 利于光反应过程中光生氧空位的形成, 克服了制氢反应中的关键能垒. 同时, 纳米材料中的缺陷促进了Fe离子的有效掺杂, Fe掺杂TiO2纳米颗粒的光热耦合平均产氢量为9.73 μmol/g, 性能提升达13倍.  相似文献   
79.
杨漂萍  李璐璐  赵志坚  巩金龙 《催化学报》2021,42(5):817-823,中插24-中插28
以可再生能源为能量来源,在水溶液中进行的光(电)催化CO2还原生成高附加值化学品和燃料是解决能源危机与环境污染的有效途径之一.CO是一种简单却很重要的CO2还原产物,它可以作为水煤气变换反应与费托合成的重要原料.具有较高CO选择性的贵金属纳米颗粒催化剂(如Au和Pd)一直受到研究者的广泛关注.一般来说,金属颗粒催化剂的催化性能与粒径大小密切相关,即所谓的粒径效应.然而在实际的理论计算研究中,由于受到计算能力的限制,催化剂模型都仅局限于简单的周期性模型或小的金属团簇模型,无法准确描述真实颗粒上复杂的反应位点的性质,导致了对催化行为的误解.因此,建立更加真实的颗粒模型对探究纳米颗粒催化剂上活性位点的性质,解释其粒径效应至关重要.本文旨在阐述Au与Pd纳米颗粒催化剂不同活性位点上CO2还原反应与产H2副反应的竞争机制,并解释Au与Pd纳米颗粒催化剂在CO2电还原中表现出不同粒径效应的原因.本文基于密度泛函理论,采用VASP软件,BEEF-vdW泛函进行计算.分别建立了原子数为55,147,309和561的颗粒模型和高CO*覆盖度模型,避免了传统周期性模型的局限性,探究了金属颗粒催化剂不同反应位点上的CO选择性.结果表明,对于颗粒模型来说,(100)位点对CO的选择性优于边缘位点;但对于周期性模型来说,Au(211)对CO的选择性则优于Au(100).产生这种反差的主要原因在于Au颗粒的边缘位点对H*的吸附过强.通过对比,我们直观地展现了颗粒模型上平面位点和Edge位点与相对应的周期性模型上CO选择性的区别,突出了模型选择对揭示活性位点性质的重要性.在此基础上,通过计算理论CO法拉第效率,发现Au颗粒随着粒径的减小,CO选择性降低,与实验的趋势一致.对于Pd催化剂来说,低覆盖度模型无法正确预测活性位点的性质;而高CO覆盖度的情况下,Pd颗粒的边缘位点对COOH*吸附能更强,这是导致边缘位点上CO选择性更高的主要原因.同样通过计算理论CO法拉第效率,发现随着粒径的减小,Pd颗粒上CO选择性升高.本文不仅成功揭示了Au与Pd颗粒催化剂上活性位点的性质,对粒径效应做出了合理解释,也强调了合理的计算模型是理论研究的基础.  相似文献   
80.
陈雪  祁明雨  李月华  唐紫蓉  徐艺军 《催化学报》2021,42(11):2020-2026
氨(NH3)作为合成燃料、化肥和潜在能源载体的重要前体,是现代化学工业中最重要的化学品之一.工业中主要通过高能耗的Haber-Bosch工艺在高温高压下将氮气和氢气转化为NH3,而原料氢气由天然气蒸汽获得,因而不仅消耗大量能源,而且导致温室气体二氧化碳的大量排放,对环境造成危害.光催化固氮以光能为驱动力,以水为质子源,为合成NH3提供了一种温和、绿色和可持续的方法.然而,传统固氮催化剂具有与N2结合弱、成键难以及电子转移效率低的缺点.为了克服上述问题,在催化剂中引入氧空缺和过渡金属作为给电子中心和活性位点的策略被广泛研究.本文以半导体Bi5O7Br纳米片作为研究对象,通过在水热合成过程中添加Na2MoO4前驱盐在Bi5O7Br中掺杂钼元素,合成了不同摩尔含量的钼掺杂Bi5O7Br(Mo-Bi5O7Br)纳米片,并将其应用于光催化N2还原反应,发现Mo-Bi5O7Br的光催化固氮性能显著优于空白Bi5O7Br的催化性能.扫描电镜、透射电镜、能量色散X射线元素映射以及X射线光电子能谱的结果表明,掺杂过程不会影响Bi5O7Br纳米片的晶相和形貌,掺杂后钼元素均匀地分布在Bi5O7Br纳米片晶格中.采用紫外可见漫反射光谱、电子自旋共振光谱、氮气程序升温脱附谱以及光电化学测试等方法研究了Mo-Bi5O7Br相较于空白Bi5O7Br纳米片在光催化N2还原反应中催化性能提升的原因.UV-vis DRS结果表明,钼掺杂对Bi5O7Br可见光吸收能力具有增强作用.以催化NH3产率最高的Mo-Bi5O7Br-1(Mo摩尔百分含量为1%)为研究样本,EPR结果表明,在黑暗条件下,只有Mo-Bi5O7Br-1样品可以检测到明显的表面氧空位(OVs)信号;在光照条件下,Bi5O7Br和Mo-Bi5O7Br-1两种样品都出现OVs的信号峰,但同等光照时间下的Mo-Bi5O7Br-1具有更高的信号强度.此外,OVs信号会随着光照时间的延长逐渐增强;当移除光源后,信号强度逐渐降低.这表明Mo-Bi5O7Br-1在光照下会产生更高浓度的表面光控OVs.N2-TPD结果表明,光控OVs作为活性位点促进催化剂对N2的吸附.关闭光源后,OVs被环境中的水或氧气中的氧原子重新填充,避免了OVs易被氧化而导致反应失活的缺点,有助于保持Mo-Bi5O7Br-1催化N2还原反应的活性和稳定性.光电化学表征结果表明,Mo-Bi5O7Br-1中的光生载流子的分离和迁移效率明显提高.以上结果表明,掺杂过渡金属钼有助于Bi5O7Br纳米片表面光控OVs的生成,光控OVs作为活性位点提升了Bi5O7Br吸附和活化N2的能力,钼掺杂和光控OVs协同提高Bi5O7Br内部光生载流子的分离迁移效率,增强Bi5O7Br光催化固氮合成氨的反应性能.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号