首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17477篇
  免费   2413篇
  国内免费   2862篇
化学   13881篇
晶体学   275篇
力学   734篇
综合类   264篇
数学   1953篇
物理学   5645篇
  2024年   6篇
  2023年   157篇
  2022年   257篇
  2021年   400篇
  2020年   477篇
  2019年   539篇
  2018年   449篇
  2017年   405篇
  2016年   695篇
  2015年   753篇
  2014年   903篇
  2013年   1288篇
  2012年   1451篇
  2011年   1512篇
  2010年   1161篇
  2009年   1125篇
  2008年   1384篇
  2007年   1272篇
  2006年   1160篇
  2005年   970篇
  2004年   914篇
  2003年   824篇
  2002年   923篇
  2001年   719篇
  2000年   517篇
  1999年   419篇
  1998年   257篇
  1997年   273篇
  1996年   222篇
  1995年   205篇
  1994年   182篇
  1993年   169篇
  1992年   157篇
  1991年   110篇
  1990年   101篇
  1989年   86篇
  1988年   49篇
  1987年   52篇
  1986年   40篇
  1985年   36篇
  1984年   26篇
  1983年   16篇
  1982年   12篇
  1981年   14篇
  1980年   9篇
  1978年   11篇
  1977年   7篇
  1976年   8篇
  1974年   5篇
  1973年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
Detailed gas-phase chemical kinetic models are widely used in combustion research, and many new mechanisms for different fuels and reacting conditions are developed each year. Recent works have highlighted the need for error checking when preparing such models, but a useful community tool to perform such analysis is missing. In this work, we present a simple online tool to screen chemical kinetic mechanisms for bimolecular reactions exceeding collision limits. The tool is implemented on a user-friendly website, cloudflame.kaust.edu.sa, and checks three different classes of bimolecular reactions; (ie, pressure independent, pressure-dependent falloff, and pressure-dependent PLOG). In addition, two other online modules are provided to check thermodynamic properties and transport parameters to help kinetic model developers determine the sources of errors for reactions that are not collision limit compliant. Furthermore, issues related to unphysically fast timescales can remain an issue even if all bimolecular reactions are within collision limits. Therefore, we also present a procedure to screen ultrafast reaction timescales using computational singular perturbation. For demonstration purposes only, three versions of the rigorously developed AramcoMech are screened for collision limit compliance and ultrafast timescales, and recommendations are made for improving the models. Larger models for biodiesel surrogates, tetrahydropyran, and gasoline surrogates are also analyzed for exemplary purposes. Numerical simulations with updated kinetic parameters are presented to show improvements in wall-clock time when resolving ultrafast timescales.  相似文献   
72.
3D perovskite CsPbBr3 has recently taken a blooming position for optoelectronic applications. However, due to the lack of natural anisotropy of optical attributes, it is a great challenge to fulfil polarization-sensitive photodetection. Here, for the first time, we exploited dimensionality reduction of CsPbBr3 to tailor a 2D-multilayered hybrid perovskite, (TRA)2CsPb2Br7 ( 1 , in which TRA is (carboxy)cyclohexylmethylammonium), serving as a potential polarized-light detecting candidate. Its unique quantum-confined 2D structure results in intrinsic anisotropy of electrical conductivity, optical absorbance, and polarization-dependent responses. Particularly, it exhibits remarkable dichroism with the photocurrent ratio (Ipc/Ipa) of ≈2.1, being much higher than that of the isotropic CsPbBr3 crystal and reported CH3NH3PbI3 nanowire (≈1.3), which reveals its great potentials for polarization-sensitive photodetection. Further, crystal-based detectors of 1 show fascinating responses to the polarized light, including high detectivity (>1010 Jones), fast responding time (≈300 μs), and sizeable on/off current ratios (>104). To our best knowledge, this is the first study on 2D Cs-based hybrid perovskite exhibiting strong polarization-sensitivity. The work highlights an effective pathway to explore new polarization sensitive candidates for hybrid perovskites and promotes their future electronic applications.  相似文献   
73.
Nonuniform nucleation is one of the major reasons for the dendric growth of metallic lithium, which leads to intractable problems in the efficiency, reversibility, and safety in Li-based batteries. To improve the deposition of metallic Li on Cu substrates, herein, a freestanding current collector (NGDY@CuNW) is formed by coating pyridinic nitrogen-doped graphdiyne (NGDY) nanofilms on 3D Cu nanowires (CuNWs). Theoretical predictions reveal that the introduction of nitrogen atoms in the 2D GDY can enhance the binding energy between the Li atom and GDY, therefore improving the lithiophilicity on the surface for uniform lithium nucleation and deposition. Accordingly, the deposited metallic Li on the NGDY@CuNW electrode exhibits a dendrite-free morphology, resulting in significant improvements in terms of the reversibility with a high coulombic efficiency (CE) and a long lifespan at high current density. Our research provides an efficient method to control the surface property of Cu, which also will be instructive for other metal batteries.  相似文献   
74.
It has been reported that many molecules could inhibit the aggregation of Aβ (amyloid-β) through suppressing either primary nucleation, secondary nucleation, or elongation processes. In order to suppress multiple pathways of Aβ aggregation, we screened 23 small molecules and found two types of inhibitors with different inhibiting mechanisms based on chemical kinetics analysis. Trp-glucose conjugates ( AS2 ) could bind with fibril ends while natural products ( D3 and D4 ) could associate with monomers. A cocktail of these two kinds of molecules achieved co-inhibition of various fibrillar species and avoid unwanted interference.  相似文献   
75.
A metal-free, visible-light-induced oxidative C−C bond cleavage of cycloketones with molecular oxygen is described. Cooperative Brønsted-acid catalysis and photocatalysis enabled selective C−C bond cleavage of cycloketones to generate an array of γ-, δ- and ϵ-keto esters under very mild conditions. Mechanistic studies indicate that singlet molecular oxygen (1O2) is responsible for this transformation.  相似文献   
76.
π–π Stacking is omnipresent not only in nature but in a wide variety of practical fields applied to our lives. Because of its importance in a performance of natural and artificial systems, such as light harvesting system and working layer in device, many researchers have put intensive effort into identifying its underlying nature. However, for the case of π–π stacked systems composed of antiaromatic units, the understanding of the fundamental mechanisms is still unclear. Herein, we synthesized a new type of planar β,β’-phenylene-bridged hexaphyrin (1.0.1.0.1.0), referred as naphthorosarin which possesses the 24π-electron conjugated pathway. Especially, the corresponding antiaromatic porphyrinoid shows the unique property to form dimeric species adopting the face-to-face geometry which is unprecedented in cases of known annulated naphthorosarins. In order to elucidate the intriguing properties derived from the stacked dimer, the current study focuses on the experimental support to rationalize the observed π–π interactions between the two subunits.  相似文献   
77.
研究了基于G-N模型与三项延迟模型的热弹性波的传播特征.在各种广义热弹性理论中,热位移概念的引入使得G-N模型具有独特性质而引起广泛的关注和应用.基于G-N模型,最近一个三相延迟模型被提出.主要研究了这两种模型下第一和第二声波(耦合热弹性波)的色散和衰减特性,分析了温度场和位移场在两种模型下的振幅比和相位差.结果发现三相延迟模型更为通用和灵活,应得到更多的关注与应用.  相似文献   
78.
79.
We have synthesized new magnetic resonance imaging (MRI) T1 contrast agents (CA1 and CA2) that permit the activatable recognition of the cellular vicinal thiol motifs of the protein thioredoxin. The contrast agents showed MR relaxivities typical of gadolinium complexes with a single water molecule coordinated to a Gd3+ center (i.e., ~4.54 mM−1s−1) for both CA1 and CA2 at 60 MHz. The contrast agent CA1 showed a ~140% relaxivity enhancement in the presence of thioredoxin, a finding attributed to a reduction in the flexibility of the molecule after binding to thioredoxin. Support for this rationale, as opposed to one based on preferential binding, came from 1H-15N-HSQC NMR spectral studies; these revealed that the binding affinities toward thioredoxin were almost the same for both CA1 and CA2. In the case of CA1, T1-weighted phantom images of cancer cells (MCF-7, A549) could be generated based on the expression of thioredoxin. We further confirmed thioredoxin expression-dependent changes in the T1-weighted contrast via knockdown of the expression of the thioredoxin using siRNA-transfected MCF-7 cells. The nontoxic nature of CA1, coupled with its relaxivity features, leads us to suggest that it constitutes a first-in-class MRI T1 contrast agent that allows for the facile and noninvasive monitoring of vicinal thiol protein motif expression in live cells.  相似文献   
80.
Organic electrode materials (OEMs) are being investigated as promising candidates for aqueous zinc-ion batteries (AZIBs) owing to their environmental friendliness, cost-effectiveness, and structural diversity, and tunability. Understanding the correlation between structural regulation of OEMs and their electrochemical property in AZIBs is vital to rational design of OEMs. Herein, we first discuss the fundamentals of the energy storage mechanism of OEMs. Then, strategies to improve the electrochemical performance, including the specific capacity, voltage, rate capability, and cycling stability, are elaborated from the perspective of molecular engineering. Finally, we share our views on the remaining challenges and prospects of OEMs in AZIBs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号