首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   3篇
  国内免费   36篇
化学   1篇
力学   3篇
综合类   9篇
物理学   85篇
  2019年   2篇
  2018年   1篇
  2017年   5篇
  2016年   3篇
  2015年   2篇
  2014年   8篇
  2013年   3篇
  2012年   5篇
  2011年   7篇
  2010年   9篇
  2009年   16篇
  2008年   8篇
  2007年   10篇
  2006年   10篇
  2005年   7篇
  2004年   2篇
排序方式: 共有98条查询结果,搜索用时 15 毫秒
61.
脉冲激光激发Rb+He混合系统, 激光频率(ν)调离Rb(5S1/2)→Rb(5PJ)共振频率(νres)Δ(Δ=ν-νres)。研究了光学碰撞Rb(5S1/2)+He+hν→Rb(5PJ)+He转移过程。激光激发RbHe分子态。RbHe激发态解离到5P1/2或5P3/2态,其布居数密度分别为n1和n2,定义分支比为n1/n2。为得到分支比,在-180 cm-1<Δ<200 cm-1范围内测量了I(D1)(5P1/2→5S1/2)与I(D2)(5P3/2→5S1/2)的相对时间积分强度比R,解速率方程组,得到一个与气压成线性关系的直线方程,从该直线的截距及斜率得到5P1/2→5P3/2的碰撞转移截面及分支比, 在D2线蓝翼,分支比随失谐量Δ的增加而增加到0.2。在D1线红翼分支比近似为40而与失谐量无关。从翼激发测量得的精细结构碰撞转移截面为(1.1±0.3)×10-17 cm2, 与从共振激发得到的截面值是一致的。测量结果表明, 原子相互作用势和非绝热效应在分子解离动力学中起关键作用。  相似文献   
62.
在样品池条件下,利用激光诱导荧光方法研究了K2[11Σ+u(v′=2)]+He,H2→K2[11Σ+u(v′=1,3)]+He,H2的碰撞能量转移。池温保持在420 K,He和H2气压在40~250 Pa之间变化。脉冲激光激发K2基态至11Σ+u(v′=2)态,荧光中含有直接和碰撞转移荧光成分,记录直接11Σ+u(v′=2)→11Σ+g(v″=0)荧光发射的时间分辨强度。在发射开始时v′=2能级的布居未受v′=1,3→v′=2碰撞转移的影响,因此光强为一纯指数曲线,从强度的对数值给出的直线斜率得到有效寿命,由Stern-Volmer方程得到v′=2→v″=0的辐射寿命为(36±7)ns,v′=2与He和H2碰撞的总的转移截面分别为(3.0±0.5)×10-16cm2和(6.4±1.2)×10-15cm2。在不同的He和H2气压下,测量v′=1,2,3→v″=0的时间积分荧光强度,结合11Σ+u(v′=1,3)能量辐射率的测量,得到了v′=2→v′=1和v′=2→v′=3的碰撞转移面分别为(1.4±0.5)×10-16cm2,(1.2±0.4)×10-16cm2(对K2+He)和(3.2±1.0)×10-15cm2,(2.6±0.9)×10-15cm2(对K2+H2)。  相似文献   
63.
利用积分时间分辨荧光方法研究了KH(X1Σ+,v=0-3)与H2之间的振动碰撞能量转移。在K-H2混合样品池中,脉冲激光(泵浦激光)双光子激发K原子至6S态,K(6S)与H2反应生成KH(X1Σ+,v=0-3)分子,利用另一脉冲激光(检测激光)激发X1Σ+至A1Σ+态,通过测量0-100μs延迟时间内各振动态的时间分辨激光感生荧光光谱(LIF)强度,通过速率方程分析和谱线轮廓积分方法,得到了KH(X1Σ+,v=0-3)与H2之间的振动能级转移速率系数分别为(2.1±0.4)×1013cm3.s1for v=1→v=0,(6.5±1.2)×1013cm3.s1for v=2→v=1和(8.9±1.6)×1013cm3.s1v=3→v=2.同时得到扩散系数为(1.3±0.2)×104s1.  相似文献   
64.
在K_2+CO_2中,受激发射泵浦得到K_2(E=3 500和4 000cm~(-1))高位振动态,研究了高振动激发K_2与CO_2碰撞产生的CO_2全分辨转动态分布。利用高分辨瞬时激光诱导荧光(LIF)测量了CO_2(0000)J=2~74的转动和平移能量轮廓,利用双高斯函数拟合,分别确定各转动态的产生和倒空线宽,从而得到碰撞产生的Doppler展宽、平移温度和平移能。对于K_2不同的激发能E,能量转移的机制是相似的,为振动-转动/平移弛豫机制。但碰撞出现部分的平移温度均超出池温,而碰撞倒空部分的平移温度均略低于池温,平移能随E的增加而增大,E增加14%,平移能增加40%。CO_2(0000)转动态分布的半对数描绘给出了双指数分布,对于K_2E=3 500cm~(-1),低J态分布T_a=(523±60)K,高J态分布T_b=(1 890±210)K。Ta接近池温,说明低J态为近弹性碰撞,属单量子弛豫过程,而高J态为非弹性碰撞,属多量子驰豫过程。对于K_2E=4 000cm~(-1)同样有双指数行为,低J分布T_a=(620±65)K,高J分布T_b=(2 240±250)K。高振动态K_2(E)与CO_2碰撞,E=4 000cm~(-1)比E=3 500cm~(-1)的Ta和Tb均约高19%,说明转动分布对于K_2不同能量是敏感的,但弹性和非弹性分支比是基本相同的,弱碰撞约占82%,强碰撞约占18%。  相似文献   
65.
在存在表面耗散层的纯Rb光学厚蒸气中,利用小功率可调谐半导体激光器泵浦Rb(5P3/2)的超精细结构能级,测量和分析了780 nm(5P3/2→5S1/2)和795 nm(5P1/2→5S1/2)后向荧光的强度和线形,耗散层(近区)起光谱滤波器的作用。有两种可能产生5P1/2态原子的机制,第一种机制是Rb(5P3/2)+Rb(5S1/2)→Rb(5P1/2)+Rb(5S1/2);第二种机制是Rb(5D)+Rb(5S)→Rb(5P)+Rb(5P),对于每一种机制,给出了后向敏化荧光的理论公式。研究后向荧光时,必须要确定荧光强度与激光功率的关系和荧光线形。激光频率扫描超精细结构共振线,得到的敏化后向荧光795 nm线形与共振荧光780 nm线形相似,其荧光强度与荧光功率有线性关系。因此,基本上可以用第一种机制解释5P1/2态布居机制。理论证明了,第二种机制产生的敏化后向荧光强度应与激光功率平方成比例,这与实验结果是不同的,第二种机制不能解释耗散层界面后向敏化荧光的产生。  相似文献   
66.
受激发射泵浦(SEP)激发Na2(X1Σ+g)的(v=33~51,J=11)高位振动态,利用激光诱导荧光(LIF)光谱研究了Na2(X)高位振动态分别与Ar和H2的碰撞能量转移过程。SEP布居的高位态粒子的衰减曲线是一纯指数函数,由此得到总碰撞转移速率系数,它们随振动能级的增加而线性增加。测量从νp=48,Jp=11转移到(47,J)态上布居的LIF光强的相对强度,得到相对转移速率系数,再由总转移速率系数得到态—态转移的绝对速率系数。对于Na2(ν)+Ar,多量子弛豫没有观察到。对于Na(ν=48)+H2,由泵浦得到的高位态ν=48上的布居的相当大的部分直接弛豫到较低能级ν=43(Δν=-5),所用的弛豫时间比位于ν=48和43中间的态之间的碰撞时间还要短,故相继单量子弛豫的机制可消除。对于ν=48,至少有占其布居数的40%的粒子经历了多量子振动弛豫过程,对这种过程的可能机制进行了讨论。  相似文献   
67.
脉冲激光激发NaK 2~1Σ~+←1~1Σ~+跃迁,单模Ti宝石激光器激发2~1Σ~+至高位态6~1Σ~+,研究了6~1Σ~+与H_2碰撞中的碰撞转移。3D→4P(1.7μm)和5S→4P(1.24μm)荧光发射说明了预解离和碰撞解离的产生。在不同的H_2密度下,通过以上能级的荧光测量得到了预解离率,碰撞解离及碰撞转移速率系数Γ_(3D)~P=(5.3±2.5)×10~8 s~(-1),Γ_(5S)~P=(3.1±1.5)×10~8 s~(-1),k_(3D)=(3.7±1.7)×10~(-11)cm~3·s~(-1),k_(5S)=(2.9±1.4)×10~(-11)cm~3·s~(-1),k_(4P→4S)=(1.1±0.5)×10~(-11)cm~3·s~(-1),k_(3D→4P)=(6.5±3.1)×10~(-12)cm~3·s~(-1),k_(5S→4P)=(4.1±1.9)×10~(-12)cm~3·s~(-1)在不同H_2密度下,记录时间分辨荧光,由Stern-Volmer公式得到6~1Σ~+→2~1Σ~+,2~1Σ~+→1~1Σ~+的自发辐射寿命分别为(28±10)ns和(15±4)ns。6~1Σ~+→2~1Σ~+6~1Σ~+→1~1Σ~+及2~1Σ~+→1~1Σ~+分子态间与H_2的碰撞转移速率系数分别为(1.8±0.6)×10~(-11)cm~3·s~(-1),(1.6±0.5)×10~(-10)cm~3·s~(-1)和(6.3±1.9)×10~(-11)cm~3·s~(-1)。转移到H_2的振动、转动和平动能各占总转移能的0.58,0.03和0.39。主要能量转移至振动和平动能,支持6~1Σ~+-H_2间的共线型碰撞机制。  相似文献   
68.
受激发射泵浦激发K2到X1Σ+g(v″=40,53)振动态.K2(v″)与CO2碰撞,瞬时泛频激光诱导荧光(LIF)测得CO2(0000,J)的初生态布居,其半对数描绘给出了双指数分布.在池温为600 K时,对于v″=40和53,低转动温度T,分别为581±70 K与621±76 K,而高转动温度分别为1395±167 K与1556±187K.T1和T2分别对应于弱碰撞和强碰撞.转动分布对K2(v″)的能量是敏感的,但弱,强碰撞分支比基本相同.利用瞬时泛频LIF强度的相对变化,得到CO2J态的出现和倒空速率系数.确定了CO2平均角动量改变ΔJ和平均反冲速度改变Δvrel间的关系.对于相同角动量的改变,K2(v″)能量增加25%,反冲速度增加约47%.对于K2(v″=40,53)-CO2碰撞,得到了能量转移概率分布函数P(ΔE).  相似文献   
69.
Rb蒸气中的5PJ+5PJ′→5S+5DJ″碰撞能量合并   总被引:1,自引:0,他引:1  
研究了Rb(5PJ) Rb(5PJ′)→Rb(5S) Rb(5DJ″)的碰撞能量合并过程,一台单模半导体激光器共振激发Rb原子的5P1/2或5P3/2态,另一与泵浦激光束反向平行的单模激光束作为吸收线探测激发态原子密度及其空间分布,吸收线分别调至5P1/2→5D3/2和5P3/2→7S1/2跃迁,由激发态原子密度和谱线荧光比得到碰撞能量合并过程5PJ 5PJ′→5S 5DJ″的截面.两台激光器同时分别激发5P1/2和5P3/2态,通过对5DJ″→5PJ的荧光探测,得到5P3/2 5P1/2碰撞转移到5D5/2和5D3/2的截面分别为(1.12±0.50)×10-14和(1.01±0.45)×10-14cm2.  相似文献   
70.
应用激光吸收和荧光方法,测量了Rb(5PJ)态与He原子碰撞的精细结构转移和碰撞猝灭截面.Rb原子被激光激发到5P3/2态,将与泵浦激光束反向平行的检测激光束调到5PJ→7S1/2的跃迁,测量5PJ激发态原子的密度及空间分布,由此计算了5PJ→5S的有效辐射率.在T=340K和He密度0.5×10^17〈N〈4×10^17cm^-3范围内测量了5P1/2→5S1/2发射的敏化荧光强度I795,量N/I795与N有抛物线型的关系,表明了5PJ的猝灭是由于与He原子的碰撞产生的,而不是由与Rb基态原子碰撞产生的.由最小二乘法确定的二次多项式的系数得到5P态与He碰撞精细结构转移截面σ3/2→1/2=(1.84±0.61)×10^-17cm^2,猝灭截面σD=(1.07±0.30)×10^-17cm^2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号