首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   3篇
  国内免费   36篇
化学   1篇
力学   3篇
综合类   9篇
物理学   85篇
  2019年   2篇
  2018年   1篇
  2017年   5篇
  2016年   3篇
  2015年   2篇
  2014年   8篇
  2013年   3篇
  2012年   5篇
  2011年   7篇
  2010年   9篇
  2009年   16篇
  2008年   8篇
  2007年   10篇
  2006年   10篇
  2005年   7篇
  2004年   2篇
排序方式: 共有98条查询结果,搜索用时 15 毫秒
51.
Rb蒸气中的辐射陷获效应和5P1/2能级有效寿命的测量   总被引:1,自引:1,他引:0  
本文测量了Rb蒸气中(5P1/2)共振能级的有效寿命.圆柱形样品池充入金属Rb,样品池温度在333K-373K之间,在池中产生10^11~10^12cm^-3的Rb原子密度.使用Nd:YAG脉冲激光器(泵浦激光)将Rb原子激发至5P3/2态,测定了转移荧光随时州衰减的曲线.由于辐射陷获效应的存在,有效辐射率是自然辐射率与透射因子的乘积.对5R1/2→5S1/2跃迁荧光曲线的测量,利用最小二乘法拟合及速率方程得到的不同温度下的有效寿命与霍斯坦理论计算得到的相符.  相似文献   
52.
脉冲激光器激发Rb原子到5P1/2态,通过碰撞能量转移Rb(5P1/2)+Rb(5S1/2)Rb(5P3/2)+Rb(5S1/2)产生5P3/2原子,研究了5P1/2+5P1/2,5P3/2+5P3/2,5P1/2+5P3/2的碰撞能量合并产生态的过程。5P1/2态原子密度利用Rb空心阴极灯通过光学吸收方法得到,而5P3/2态密度通过5P3/25S1/2(D2线)与5P1/25S1/2(D1线)跃迁的荧光比得到。因为5P3/2+5P3/2或5P1/2+5P3/2的能量和与5D态的能量差远小于5P1/2+5P1/2与5D态的能量差,因此5P3/2+5P3/2,5P1/2+5P3/2的过程将影响5P1/2+5P1/2的测量结果。由于精细结构能量转移的时间比5D态寿命小得多,故5P1/2+5P1/2,5P1/2+5P3/2和5P3/2+5P3/2产生的5D5P荧光是同时产生的。在不同的池温下测量了积分荧光信号的相对强度,5P态原子有效寿命由辐射陷获的理论得到,结合激发态原子密度得到了5P1/2+5P1/2,5P1/2+5P3/2和5P3/2+5P3/2碰撞能量合并截面分别为7.810-15,2.9×10-14和3.1×10-14 cm2。结果表明5P1/2+5P3/2与5P3/2+5P3/2产生5D3/2态的截面基本是相等的。  相似文献   
53.
用光学-光学双共振光谱技术研究Cs蒸气中的共振交换碰撞   总被引:1,自引:1,他引:0  
利用窄带半导体激光器泵浦所有具有相同z分量速度的基态Cs原子至激发态,研究了Cs(6P3/2, v) +Cs(6S1/2, v′)→Cs(6S1/2, v) +Cs(6P3/2, v′)的共振交换碰撞过程。与泵浦光反向平行的另一单模激光器激发6P3/2至8S1/2态,以检测6P3/2态原子的速度分布,确定激发态原子的热能化效应。通过测量8S1/2→6P1/2荧光的尖峰强度与相应的多普勒背景的强度比,得到共振交换碰撞速率系数为k=9.62×10-7 cm3·s-1。证明了在纯碱金属蒸气中,由共振交换机制产生的热能化效应的大小比由速度改变碰撞引起的大3个数量级。  相似文献   
54.
利用光学-光学双共振光谱技术研究了NaK分子21Σ+→61Σ+跃迁线的碰撞增宽。一台单模半导体激光器实现11Σ+(v″,J″)→21Σ+(v′,J′)的跃迁,另一单模半导体激光器激发21Σ+(v′,J′)能级到61Σ+的振转能级,二激光束反向平行通过样品池。谱线总线宽与K原子密度成线性关系,由其斜率得到增宽速率系数kbr=(1.4±0.7)×10-8 cm3·s-1。同时研究了21Σ+(v=8,J=12)→21Σ+(v=8,J=13,14)转动能级间的碰撞激发转移,测量谱线的相对强度,由速率方程得到碰撞转移速率分别为6.1×106和5.2×106 s-1。  相似文献   
55.
利用受激拉曼泵浦将H2激发到v=1,J=3态,研究了H2(1, 3)态与Cs2分子碰撞(1, 3)态的弛豫及Cs2(X1+g)振动态的激发过程。利用相干反斯托克斯拉曼散射(CARS)检测H2的振转态分布,由CARS峰值得到密度比[H2(1, 3)]/[H2(0, 3)]和[H2(1, 1)]/[H2(1, 3)],由H2(v=0)振转态的Boltzmann分布确定H2(0, 3)的密度,由此得到[H2(1, 3)]和[H2(1, 1)]态的密度。激光诱导荧光光谱(LIF)确定被碰撞激发的Cs2(X1+g, v=11-15)各态。利用单模半导体激光作瞬时光吸收,对于v= 11, 12, 13, 14和15,积分吸收系数(单位:106cm-1s-1)分别是6.5,7.9,7.0,6.1和4.7,结合H2(1, 3)的密度,得到H2(1, 3)Cs2(X1+g, v)的转移速率系数,对于v=11-15,分别是(单位:10-13cm-1s-1)1. 40. 6,1.70. 7,1.50. 6,1.30.5和1.00. 4。利用吸收线Doppler增宽测量分别得到了Cs2(X1+g, v=11-15)的平动能。  相似文献   
56.
受激发射泵浦激发K2到X1Σ+g(v″=40,53)振动态.K2(v″)与CO2碰撞,瞬时泛频激光诱导荧光(LIF)测得CO2(0000,J)的初生态布居,其半对数描绘给出了双指数分布.在池温为600 K时,对于v″=40和53,低转动温度T,分别为581±70 K与621±76 K,而高转动温度分别为1395±167 K与1556±187K.T1和T2分别对应于弱碰撞和强碰撞.转动分布对K2(v″)的能量是敏感的,但弱,强碰撞分支比基本相同.利用瞬时泛频LIF强度的相对变化,得到CO2J态的出现和倒空速率系数.确定了CO2平均角动量改变ΔJ和平均反冲速度改变Δvrel间的关系.对于相同角动量的改变,K2(v″)能量增加25%,反冲速度增加约47%.对于K2(v″=40,53)-CO2碰撞,得到了能量转移概率分布函数P(ΔE).  相似文献   
57.
脉冲激光激发NaK 2~1Σ~+←1~1Σ~+跃迁,单模Ti宝石激光器激发2~1Σ~+至高位态6~1Σ~+,研究了6~1Σ~+与H_2碰撞中的碰撞转移。3D→4P(1.7μm)和5S→4P(1.24μm)荧光发射说明了预解离和碰撞解离的产生。在不同的H_2密度下,通过以上能级的荧光测量得到了预解离率,碰撞解离及碰撞转移速率系数Γ_(3D)~P=(5.3±2.5)×10~8 s~(-1),Γ_(5S)~P=(3.1±1.5)×10~8 s~(-1),k_(3D)=(3.7±1.7)×10~(-11)cm~3·s~(-1),k_(5S)=(2.9±1.4)×10~(-11)cm~3·s~(-1),k_(4P→4S)=(1.1±0.5)×10~(-11)cm~3·s~(-1),k_(3D→4P)=(6.5±3.1)×10~(-12)cm~3·s~(-1),k_(5S→4P)=(4.1±1.9)×10~(-12)cm~3·s~(-1)在不同H_2密度下,记录时间分辨荧光,由Stern-Volmer公式得到6~1Σ~+→2~1Σ~+,2~1Σ~+→1~1Σ~+的自发辐射寿命分别为(28±10)ns和(15±4)ns。6~1Σ~+→2~1Σ~+6~1Σ~+→1~1Σ~+及2~1Σ~+→1~1Σ~+分子态间与H_2的碰撞转移速率系数分别为(1.8±0.6)×10~(-11)cm~3·s~(-1),(1.6±0.5)×10~(-10)cm~3·s~(-1)和(6.3±1.9)×10~(-11)cm~3·s~(-1)。转移到H_2的振动、转动和平动能各占总转移能的0.58,0.03和0.39。主要能量转移至振动和平动能,支持6~1Σ~+-H_2间的共线型碰撞机制。  相似文献   
58.
受激发射泵浦(SEP)激发Na2(X1Σ+g)的(v=33~51,J=11)高位振动态,利用激光诱导荧光(LIF)光谱研究了Na2(X)高位振动态分别与Ar和H2的碰撞能量转移过程。SEP布居的高位态粒子的衰减曲线是一纯指数函数,由此得到总碰撞转移速率系数,它们随振动能级的增加而线性增加。测量从νp=48,Jp=11转移到(47,J)态上布居的LIF光强的相对强度,得到相对转移速率系数,再由总转移速率系数得到态—态转移的绝对速率系数。对于Na2(ν)+Ar,多量子弛豫没有观察到。对于Na(ν=48)+H2,由泵浦得到的高位态ν=48上的布居的相当大的部分直接弛豫到较低能级ν=43(Δν=-5),所用的弛豫时间比位于ν=48和43中间的态之间的碰撞时间还要短,故相继单量子弛豫的机制可消除。对于ν=48,至少有占其布居数的40%的粒子经历了多量子振动弛豫过程,对这种过程的可能机制进行了讨论。  相似文献   
59.
激发态Na2与H2碰撞,使H2(v=3,J=3)得到布居,在H2和He总气压为800Pa及温度为700K的条件下,利用相干反斯托克斯拉曼散射(CARS)光谱技术研究了H2(3,3)与H2(He)间转动能量转移过程。改变CARS激光束与激发Na2的激光之间的延迟时间,测量He不同摩尔配比时H2(3,J)态CARS谱强度的时间演化,得到H2(3,3)的总弛豫速率系数分别为=(21±5)×10-13cm3s-1和=(5.6±1.6)×10-13cm3s-1。测量H2(3,J)各转动态的相对CARS谱强度,由速率方程分析,得到H2(3,3)+H2→H2(3,J)+H2中,对于J=2,4,转移速率系数分别为11±4和8.2±3.1cm3s-1。在H2(3,3)+He→H2(3,J)+He中,对于J=2,4,转移速率系数分别为3.1±1.2和2.1±0.7cm3s-1。对于H2(3,3),单量子弛豫׀∆J׀=1约占该态总弛豫率的90%。  相似文献   
60.
在样品池条件下,利用激光诱导荧光方法研究了K2[11Σ+u(v′=2)]+He,H2→K2[11Σ+u(v′=1,3)]+He,H2的碰撞能量转移。池温保持在420 K,He和H2气压在40~250 Pa之间变化。脉冲激光激发K2基态至11Σ+u(v′=2)态,荧光中含有直接和碰撞转移荧光成分,记录直接11Σ+u(v′=2)→11Σ+g(v″=0)荧光发射的时间分辨强度。在发射开始时v′=2能级的布居未受v′=1,3→v′=2碰撞转移的影响,因此光强为一纯指数曲线,从强度的对数值给出的直线斜率得到有效寿命,由Stern-Volmer方程得到v′=2→v″=0的辐射寿命为(36±7)ns,v′=2与He和H2碰撞的总的转移截面分别为(3.0±0.5)×10-16cm2和(6.4±1.2)×10-15cm2。在不同的He和H2气压下,测量v′=1,2,3→v″=0的时间积分荧光强度,结合11Σ+u(v′=1,3)能量辐射率的测量,得到了v′=2→v′=1和v′=2→v′=3的碰撞转移面分别为(1.4±0.5)×10-16cm2,(1.2±0.4)×10-16cm2(对K2+He)和(3.2±1.0)×10-15cm2,(2.6±0.9)×10-15cm2(对K2+H2)。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号