首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6729篇
  免费   1467篇
  国内免费   1292篇
化学   1567篇
晶体学   52篇
力学   1882篇
综合类   250篇
数学   1500篇
物理学   4237篇
  2024年   43篇
  2023年   230篇
  2022年   266篇
  2021年   308篇
  2020年   201篇
  2019年   275篇
  2018年   185篇
  2017年   301篇
  2016年   302篇
  2015年   344篇
  2014年   603篇
  2013年   417篇
  2012年   411篇
  2011年   505篇
  2010年   438篇
  2009年   476篇
  2008年   497篇
  2007年   366篇
  2006年   374篇
  2005年   338篇
  2004年   330篇
  2003年   330篇
  2002年   264篇
  2001年   236篇
  2000年   193篇
  1999年   166篇
  1998年   168篇
  1997年   145篇
  1996年   144篇
  1995年   113篇
  1994年   84篇
  1993年   77篇
  1992年   70篇
  1991年   68篇
  1990年   69篇
  1989年   63篇
  1988年   31篇
  1987年   26篇
  1986年   11篇
  1985年   7篇
  1984年   4篇
  1983年   3篇
  1982年   3篇
  1980年   1篇
  1959年   2篇
排序方式: 共有9488条查询结果,搜索用时 15 毫秒
61.
将氧化石墨凝胶超声不同时间制备氧化石墨烯(GO)溶胶,再以GO溶胶为前驱体采用一步水热法制备了三维还原氧化石墨烯(3DRGO),采用X射线衍射(XRD)、拉曼光谱、原子力显微镜(AFM)、扫描电子显微镜(SEM)和电化学测试等研究了不同超声时间对3DRGO的形貌、结构及超级电容性能的影响.结果表明,当超声时间不超过120 min时,经水热反应后还原氧化石墨烯均能形成稳定的三维结构,但随着超声时间的延长,三维结构尺寸不断减小,强度增加,样品的内部结构也由片状逐渐向多孔网状转化;当超声时间超过120 min时,还原氧化石墨烯虽具有网状结构,但在宏观上不利于形成稳定的三维结构.电化学测试结果表明,经不同超声时间所制备的还原氧化石墨烯均表现出较好的超级电容性能,其中超声时间为120 min时制备的3DRGO具有更均匀的多孔网状结构,表现出了最佳的超级电容性能,在1 A/g电流密度下其比电容可达328 F/g,即使在20 A/g的大电流密度条件下,其比电容仍可高达240 F/g.  相似文献   
62.
《有机化学》2015,(3):743
<正>《有机化学》是一份由中国化学会主办、中国科学院上海有机化学研究所承办的集中反映有机化学界的最新科研成果、研究动态以及发展趋势的学术类刊物,主要刊登有机化学领域基础研究和应用基础研究的原始性研究成果,设有综述与进展、研究论文、研究通讯、研究简报、学术动态、研究专题等栏目。本刊由中国科学院院士陈庆云教授任主编、丁奎岭教授任编辑室主任,由14名中国科学院院士和中国工程院院士等老、中、青三代共50名学术专家组成的编委会。本刊所载论文水平较高,内容涉及国家自然科学基金、"973"项目及其它科学基金资助项目成果。本刊所刊论文被美国《科学引文索引》(SCI)网络版、美国《化学文摘》(CA)、《俄罗斯文摘杂志》、《中国学术  相似文献   
63.
研发了一种多层复合微流控芯片,包含64细胞培养微孔阵列,该微阵列集成了细胞进样、水凝胶三维支架形成和持续灌流培养的过程.以MCF-7乳腺癌细胞为模型,连续培养中监测细胞存活率、细胞密度、增殖率和细胞内pH值,并同时进行冰冻切片后免疫组化染色.实验结果显示,乳腺癌细胞在水凝胶微球中增殖形成了类组织结构.E-cadherin及Vinculin在细胞内、细胞间隙均出现较强表达,提示水凝胶微球中细胞建立了细胞-细胞、细胞-间质连接.芯片上连续培养15天内细胞存活率保持在85%以上,细胞增殖率随时间延长而递减.细胞内pH值检测显示芯片3D培养细胞内部呈现明显的酸化,其程度随着细胞密度增大而增加.这种芯片肿瘤组织微阵列构建方法简单高效,有望发展成为肿瘤研究的有力工具.  相似文献   
64.
典型的自组装短肽在水中可形成稳定的β-sheet二级结构,在生理性环境下则能够形成稳定的纳米纤维,可进一步形成含水量达99%的水凝胶,具有高纯度、可降解及无免疫反应等突出优点,能模拟生物体内的三维基质环境而作为细胞三维培养的新型生物材料。本文主要采用了圆二色谱仪、原子力显微镜、倒置显微镜等探究新型短肽GFS-2的自组装性能及其在细胞三维培养中的应用。此研究可能会启发设计更多的新型自组装短肽服务于化学、生物材料、医学工程等领域。  相似文献   
65.
肌红蛋白(Myoglobin,Mb)中血红素辅基不仅具有储氧功能,也能吸收特定波长的光而影响蛋白功能表达。实验发现,部分游离的氨基酸对光诱导高铁肌红蛋白(metM b,Fe(III)-Mb)的还原过程及还原程度都有重要作用,因此,本文采用紫外-可见吸收光谱、圆二色谱、三维荧光光谱法,在光照体系中加入拥挤试剂来模拟细胞内拥挤环境,研究芳香氨基酸[色氨酸(Trp)、苯丙氨酸(Phe)、酪氨酸(Tyr)、半胱氨酸(Cys)]对metM b还原的影响。结果表明,含-OH或-SH的氨基酸(Tyr、Cys)能使metM b发生较好的光还原,无-OH或-SH基团的氨基酸(Trp、Phe)对metM b的光还原作用较弱,氨基酸促进metM b光还原的整个过程可能是分子间电子转移的过程。metM b在拥挤环境聚蔗糖70(Ficoll 70)中的光诱导还原程度比在稀溶液中高,拥挤试剂Ficoll70对蛋白的二级结构起保护作用,能够稳定血红素微环境。  相似文献   
66.
离子特异性效应在固-液界面反应中是普遍存在的. 近期研究指出, 在较低电解质浓度的某些体系中, 离子特异性效应可能并非来源于色散力、经典诱导力、离子半径或水合半径的大小等, 而是界面附近强电场中的离子极化作用. 这种作用可使界面附近的吸附态反号离子被强烈极化(高达经典极化的104倍). 强烈极化的结果将导致离子在界面附近受到的库仑力远远超过离子电荷所能产生的库仑力, 这体现在离子的有效电荷将远大于离子的实际电荷. 因此胶体体系中基于这种强极化的离子有效电荷可以用来定量表征离子特异性效应的强度. 本研究在蒙脱石-胡敏酸混合悬液凝聚过程中发现了Na+、K+、Ca2+、Cu2+四种离子的离子特异性效应, 提出了基于激光散射技术测定离子有效电荷的方法, 并成功获得了被强烈极化后的离子有效电荷数值. 实验测得的Na+、K+、Ca2+、Cu2+四种离子的有效电荷值分别为: ZNa(effective)=1.46, ZK(effective)=1.86, ZCa(effective)=3.92, ZCu(effective)=6.48.该结果表明: (1) 离子在强电场中的极化将大大提高离子的有效电荷, 从而极大地增强离子所受的库仑作用力;(2) 离子的电子层数越多, 离子极化越强烈, 离子的有效电荷增加越多.  相似文献   
67.
物质的蒸气压是化学、化工、冶金、医药等领域的重要基础数据。测量饱和蒸气压是大学物理化学实验教学中的一个基础实验,测量方法主要有静态法和动态法,但两种方法的比较尚未见报道。本文通过比较,得出了两种方法的优缺点以及注意事项。  相似文献   
68.
在ITO玻璃表面构建了三维有序多孔结构的金掺杂纳米Ti O2薄膜(3DOM GTD/ITO),同时制备了一种细胞色素c(Cyt c)酶生物传感器(Cyt c/3DOM GTD/ITO)。通过透射电镜(TEM)、扫描电镜(SEM)对修饰电极进行表征。紫外-可见光谱实验表明吸附在GTD上的Cyt c能够保持其生物活性,二级结构未被破坏。同时研究了Cyt c在3DOM GTD/ITO修饰电极表面的直接电化学及对H2O2的电催化行为。结果显示,Cyt c在3DOM GTD/ITO修饰电极上有显著的直接电化学响应,峰电流与扫描速度呈线性关系,说明该电极过程是表面电化学控制过程。Cyt c/3DOM GTD/ITO修饰电极对H2O2具有良好的催化性能,线性范围为3.0×10-7~1.70×10-5mol/L,检出限为3.6×10-8mol/L(S/N=3),响应时间为5 s,且该修饰电极具有较好的重现性和稳定性。  相似文献   
69.
用矩形栅自动相移法测量三维物体形状   总被引:5,自引:0,他引:5  
本文介绍了一种自动测量物体三维形状的新方法。该方法将矩形栅投影于三维物体表面,利用图像处理系统自动产生云纹和自动实现云纹相移,实现了三维物体形成恢复。本文通过实验验证了该方法的正确性下处理精度。方法容易实现,能较好消除多种系统误差,抗干扰能力强,精度和自动化程度高。  相似文献   
70.
基于势能互补原理,不引入额外松弛变量,对库仑摩擦定律未做预先线性化近似,提出了三维弹性摩擦接触问题的非线性互补-接触柔度法,收敛性和收敛速率得到了严格理论保证。数值实验结果表明方法可靠、有效、低存储量、高精度  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号