首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9508篇
  免费   710篇
  国内免费   342篇
化学   2961篇
晶体学   32篇
力学   647篇
综合类   58篇
数学   4661篇
物理学   2201篇
  2024年   9篇
  2023年   155篇
  2022年   136篇
  2021年   273篇
  2020年   387篇
  2019年   335篇
  2018年   342篇
  2017年   384篇
  2016年   338篇
  2015年   305篇
  2014年   548篇
  2013年   1206篇
  2012年   562篇
  2011年   570篇
  2010年   444篇
  2009年   688篇
  2008年   693篇
  2007年   535篇
  2006年   429篇
  2005年   411篇
  2004年   305篇
  2003年   200篇
  2002年   161篇
  2001年   90篇
  2000年   99篇
  1999年   105篇
  1998年   81篇
  1997年   86篇
  1996年   93篇
  1995年   73篇
  1994年   64篇
  1993年   52篇
  1992年   46篇
  1991年   25篇
  1990年   16篇
  1989年   23篇
  1988年   16篇
  1987年   18篇
  1986年   17篇
  1985年   43篇
  1984年   50篇
  1983年   20篇
  1982年   25篇
  1981年   26篇
  1980年   17篇
  1979年   16篇
  1978年   12篇
  1977年   8篇
  1976年   7篇
  1973年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
For a general dyadic grid, we give a Calderón–Zygmund type decomposition, which is the principle fact about the multilinear maximal function ss="section_image" src="/cms/asset/96f31c91-6ef2-4487-a60e-3e958a47a478/mana201700376-math-0001.png"> on the upper half‐spaces. Using the decomposition, we study the boundedness of ss="section_image" src="/cms/asset/943d9cea-1e55-4c0d-a66d-edbbe6510b3b/mana201700376-math-0002.png">. We obtain a natural extension to the multilinear setting of Muckenhoupt's weak‐type characterization. We also partially obtain characterizations of Muckenhoupt's strong‐type inequalities with one weight. Assuming the reverse Hölder's condition, we get a multilinear analogue of Sawyer's two weight theorem. Moreover, we also get Hytönen–Pérez type weighted estimates.  相似文献   
62.
Huanyin Chen 《代数通讯》2019,47(7):2967-2978
We introduce and study a new class of generalized inverses in rings. An element a in a ring R has generalized Hirano inverse if there exists <span class="NLM_disp-formula-image inline-formula">script>src="//:0" data-src='{"type":"image","src":"/na101/home/literatum/publisher/tandf/journals/content/lagb20/2019/lagb20.v047.i07/00927872.2018.1546391/20190531/images/lagb_a_1546391_ilm0001.gif"}' />script>src="//:0" alt="" class="mml-formula" data-formula-source="{"type" : "image", "src" : "/na101/home/literatum/publisher/tandf/journals/content/lagb20/2019/lagb20.v047.i07/00927872.2018.1546391/20190531/images/lagb_a_1546391_ilm0001.gif"}" /><span class="mml-formula">span>span><span class="NLM_disp-formula inline-formula">src="//:0" alt="" data-formula-source="{"type" : "mathjax"}" />splay="inline" overflow="scroll" altimg="eq-00001.gif">bRspan> such that <span class="NLM_disp-formula-image inline-formula">script>src="//:0" data-src='{"type":"image","src":"/na101/home/literatum/publisher/tandf/journals/content/lagb20/2019/lagb20.v047.i07/00927872.2018.1546391/20190531/images/lagb_a_1546391_ilm0002.gif"}' />script>src="//:0" alt="" class="mml-formula" data-formula-source="{"type" : "image", "src" : "/na101/home/literatum/publisher/tandf/journals/content/lagb20/2019/lagb20.v047.i07/00927872.2018.1546391/20190531/images/lagb_a_1546391_ilm0002.gif"}" /><span class="mml-formula">span>span><span class="NLM_disp-formula inline-formula">src="//:0" alt="" data-formula-source="{"type" : "mathjax"}" />splay="inline" overflow="scroll" altimg="eq-00002.gif">bab=b,bcomsup>m2sup>stretchy="false">(astretchy="false">),sup>a2sup>?absup>Rqnilsup>.span> We prove that the generalized Hirano inverse of an element is its generalized Drazin inverse. An element <span class="NLM_disp-formula-image inline-formula">script>src="//:0" data-src='{"type":"image","src":"/na101/home/literatum/publisher/tandf/journals/content/lagb20/2019/lagb20.v047.i07/00927872.2018.1546391/20190531/images/lagb_a_1546391_ilm0003.gif"}' />script>src="//:0" alt="" class="mml-formula" data-formula-source="{"type" : "image", "src" : "/na101/home/literatum/publisher/tandf/journals/content/lagb20/2019/lagb20.v047.i07/00927872.2018.1546391/20190531/images/lagb_a_1546391_ilm0003.gif"}" /><span class="mml-formula">span>span><span class="NLM_disp-formula inline-formula">src="//:0" alt="" data-formula-source="{"type" : "mathjax"}" />splay="inline" overflow="scroll" altimg="eq-00003.gif">aRspan> has generalized Hirano inverse if and only if there exists <span class="NLM_disp-formula-image inline-formula">script>src="//:0" data-src='{"type":"image","src":"/na101/home/literatum/publisher/tandf/journals/content/lagb20/2019/lagb20.v047.i07/00927872.2018.1546391/20190531/images/lagb_a_1546391_ilm0004.gif"}' />script>src="//:0" alt="" class="mml-formula" data-formula-source="{"type" : "image", "src" : "/na101/home/literatum/publisher/tandf/journals/content/lagb20/2019/lagb20.v047.i07/00927872.2018.1546391/20190531/images/lagb_a_1546391_ilm0004.gif"}" /><span class="mml-formula">span>span><span class="NLM_disp-formula inline-formula">src="//:0" alt="" data-formula-source="{"type" : "mathjax"}" />splay="inline" overflow="scroll" altimg="eq-00004.gif">p=sup>p2sup>comsup>m2sup>stretchy="false">(astretchy="false">)span> such that <span class="NLM_disp-formula-image inline-formula">script>src="//:0" data-src='{"type":"image","src":"/na101/home/literatum/publisher/tandf/journals/content/lagb20/2019/lagb20.v047.i07/00927872.2018.1546391/20190531/images/lagb_a_1546391_ilm0005.gif"}' />script>src="//:0" alt="" class="mml-formula" data-formula-source="{"type" : "image", "src" : "/na101/home/literatum/publisher/tandf/journals/content/lagb20/2019/lagb20.v047.i07/00927872.2018.1546391/20190531/images/lagb_a_1546391_ilm0005.gif"}" /><span class="mml-formula">span>span><span class="NLM_disp-formula inline-formula">src="//:0" alt="" data-formula-source="{"type" : "mathjax"}" />splay="inline" overflow="scroll" altimg="eq-00005.gif">sup>a2sup>?psup>Rqnilsup>span>. We then completely determine when a 2?×?2 matrix over projective-free rings has generalized Hirano inverse. Cline’s formula and additive properties for generalized Hirano inverses are thereby obtained.  相似文献   
63.
Let e<sub>?sub>, for ? = 1,2,3, be orthogonal unit vectors in ss="section_image" src="/cms/asset/52ceedd5-5bf8-481d-b7b9-be17e2e8e474/mma5466-math-0001.png"> and let ss="section_image" src="/cms/asset/cb6de83e-4f6c-428e-85cc-1060941f0562/mma5466-math-0002.png"> be a bounded open set with smooth boundary ?Ω. Denoting by ss="section_image" src="/cms/asset/b0a4af4d-5c02-479a-8ca2-eced460c7fe7/mma5466-math-0003.png"> a point in Ω, the heat equation, for nonhomogeneous materials, is obtained replacing the Fourier law, given by the following: ss="" src="/cms/asset/d1fde17e-5c5b-4abd-ac68-eeb59bae2057/mma5466-math-0004.png" alt="urn:x-wiley:mma:media:mma5466:mma5466-math-0004" title="urn:x-wiley:mma:media:mma5466:mma5466-math-0004"> into the conservation of energy law, here a, b, ss="section_image" src="/cms/asset/b744c327-5ea3-467d-8147-418995b7e95f/mma5466-math-0005.png"> are given functions. With the Sspectrum approach to fractional diffusion processes we determine, in a suitable way, the fractional powers of T. Then, roughly speaking, we replace the fractional powers of T into the conservation of energy law to obtain the fractional evolution equation. This method is important for nonhomogeneous materials where the Fourier law is not simply the negative gradient. In this paper, we determine under which conditions on the coefficients a, b, ss="section_image" src="/cms/asset/11890952-8eb9-44ec-9d6e-f3397e17e3b0/mma5466-math-0006.png"> the fractional powers of T exist in the sense of the Sspectrum approach. More in general, this theory allows to compute the fractional powers of vector operators that arise in different fields of science and technology. This paper is devoted to researchers working in fractional diffusion and fractional evolution problems, partial differential equations, and noncommutative operator theory.  相似文献   
64.
We consider the Griffith fracture model in two spatial dimensions, and prove existence of strong minimizers, with closed jump set and continuously differentiable deformation fields. One key ingredient, which is the object of the present paper, is a generalization to the vectorial situation of the decay estimate by De Giorgi, Carriero, and Leaci. This is based on replacing the coarea formula by a method to approximate s="true">Ss="true">Bsup is="true">s="true">s="true">Ds="true">s="true">psup> functions with small jump set by Sobolev functions, and is restricted to two dimensions. The other two ingredients will appear in companion papers and consist respectively in regularity results for vectorial elliptic problems of the elasticity type and in a method to approximate in energy s="true">Gs="true">Ss="true">Bsup is="true">s="true">s="true">Ds="true">s="true">psup> functions by s="true">Ss="true">Bsup is="true">s="true">s="true">Vs="true">s="true">psup> ones.  相似文献   
65.
This paper deals with devising a novel exponential scheme, implicit in nature, using half step discretization of order four for computing the numerical solution of quasi-linear elliptic partial differential equations of the type <span class="NLM_disp-formula-image inline-formula">script>src="/na101/home/literatum/publisher/tandf/journals/content/gdea20/2019/gdea20.v025.i05/10236198.2019.1624737/20190703/images/gdea_a_1624737_ilm0001.gif" alt="" />script>src="//:0" alt="" class="mml-formula" data-formula-source="{"type" : "image", "src" : "/na101/home/literatum/publisher/tandf/journals/content/gdea20/2019/gdea20.v025.i05/10236198.2019.1624737/20190703/images/gdea_a_1624737_ilm0001.gif"}" /><span class="mml-formula">span>span><span class="NLM_disp-formula inline-formula">src="//:0" alt="" data-formula-source="{"type" : "mathjax"}" />γ(x,y,w)sub>wxxsub>+ψ(x,y,w)sub>wyysub>=g(x,y,w,sub>wxsub>,sub>wysub>)span>, <span class="NLM_disp-formula-image inline-formula">script>src="/na101/home/literatum/publisher/tandf/journals/content/gdea20/2019/gdea20.v025.i05/10236198.2019.1624737/20190703/images/gdea_a_1624737_ilm0002.gif" alt="" />script>src="//:0" alt="" class="mml-formula" data-formula-source="{"type" : "image", "src" : "/na101/home/literatum/publisher/tandf/journals/content/gdea20/2019/gdea20.v025.i05/10236198.2019.1624737/20190703/images/gdea_a_1624737_ilm0002.gif"}" /><span class="mml-formula">span>span><span class="NLM_disp-formula inline-formula">src="//:0" alt="" data-formula-source="{"type" : "mathjax"}" />(x,y)(0,1)×(0,1)span>. Nine mesh points in a single compact cell are being used in this method. An elaborate convergence analysis of the proposed method has been worked out. The technique for a scalar equation is eventually extended to solve the systems of quasi-linear elliptic equations. The technique is then applied to noteworthy problems and computational outcomes corroborate the theoretical rate of convergence. Linear and non-linear singular problems are tackled separately ensuring the usage of nine spatial grid points of a single computing cell.  相似文献   
66.
Special generating functions and Mehler's formula for the univariate complex Hermite polynomials are obtained and next employed to introduce and study some one- and two-dimensional integral transforms of Segal–Bargmann type in the framework of some specific functional Hilbert spaces; including the so-called generalized Bargmann–Fock spaces that are realized as <span class="NLM_disp-formula-image inline-formula">script>src="//:0" data-src='{"type":"image","src":"/na101/home/literatum/publisher/tandf/journals/content/gitr20/2019/gitr20.v030.i07/10652469.2019.1593407/20190428/images/gitr_a_1593407_ilm0001.gif"}' />script>src="//:0" alt="" class="mml-formula" data-formula-source="{"type" : "image", "src" : "/na101/home/literatum/publisher/tandf/journals/content/gitr20/2019/gitr20.v030.i07/10652469.2019.1593407/20190428/images/gitr_a_1593407_ilm0001.gif"}" /><span class="mml-formula">span>span><span class="NLM_disp-formula inline-formula">src="//:0" alt="" data-formula-source="{"type" : "mathjax"}" />sup>L2sup>span>-eigenspaces of a special magnetic Schrödinger operator.  相似文献   
67.
In this paper, we study the Heinz type inequalities for mappings satisfying Poisson’s equation. Some results generalize the ones obtained by Partyka and Sakan.  相似文献   
68.
This work presents sufficient conditions for the existence of homoclinic solutions for second order coupled discontinuous systems of differential equations on the real line without the usual growth condition in the literature.The arguments apply the fixed point theory, Green's functions technique, sup is="true">s="true">s="true">Ls="true">s="true">1sup>-Carathéodory functions, lower and upper solutions and Schauder's fixed point theorem.  相似文献   
69.
Proteolysis of amyloid-β (Aβ) is a promising approach against Alzheimer's disease. However, it is not feasible to employ natural hydrolases directly because of their cumbersome preparation and purification, poor stability, and hazardous immunogenicity. Therefore, artificial enzymes have been developed as potential alternatives to natural hydrolases. Since specific cleavage sites of Aβ are usually embedded inside the β-sheet structures that restrict access by artificial enzymes, this strongly hinders their efficiency for practical applications. Herein, we construct a NIR (near-IR) controllable artificial metalloprotease (MoS<sub>2sub>-Co) using a molybdenum disulfide nanosheet (MoS<sub>2sub>) and a cobalt complex of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (Codota). Evidenced by detailed experimental and theoretical studies, the NIR-enhanced MoS<sub>2sub>-Co can circumvent the restriction by simultaneously inhibition of β-sheet formation and destroying β-sheet structures of the preformed Aβ aggregates in living cell. Furthermore, our designed MoS<sub>2sub>-Co is an easy to graft Aβ-target agent that prevents misdirected or undesirable hydrolysis reactions, and has been demonstrated to cross the blood brain barrier. This method can be adapted for hydrolysis of other kinds of amyloids.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号