首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2664篇
  免费   89篇
  国内免费   10篇
化学   1532篇
晶体学   12篇
力学   124篇
数学   529篇
物理学   566篇
  2023年   27篇
  2022年   17篇
  2021年   73篇
  2020年   49篇
  2019年   66篇
  2018年   44篇
  2017年   44篇
  2016年   84篇
  2015年   72篇
  2014年   76篇
  2013年   140篇
  2012年   175篇
  2011年   177篇
  2010年   122篇
  2009年   126篇
  2008年   148篇
  2007年   162篇
  2006年   158篇
  2005年   140篇
  2004年   116篇
  2003年   77篇
  2002年   60篇
  2001年   38篇
  2000年   35篇
  1999年   21篇
  1998年   26篇
  1997年   28篇
  1996年   30篇
  1995年   24篇
  1994年   19篇
  1993年   18篇
  1992年   19篇
  1991年   11篇
  1990年   16篇
  1989年   19篇
  1987年   13篇
  1986年   13篇
  1985年   23篇
  1984年   30篇
  1983年   12篇
  1982年   27篇
  1981年   23篇
  1980年   25篇
  1978年   13篇
  1977年   14篇
  1976年   10篇
  1975年   11篇
  1974年   11篇
  1973年   13篇
  1972年   11篇
排序方式: 共有2763条查询结果,搜索用时 31 毫秒
1.
Ferrarini  A.  Finotello  A.  Salsano  G.  Auricchio  F.  Palombo  D.  Spinella  G.  Pane  B.  Conti  M. 《Acta Mechanica Sinica》2021,37(7):1192-1192
Acta Mechanica Sinica - A Correction to this paper has been published: https://doi.org/10.1007/s10409-021-01066-2  相似文献   
2.
The survival of living beings, including humanity, depends on a continuous supply of clean water. However, due to the development of industry, agriculture, and population growth, an increasing number of wastewaters is discarded, and the negative effects of such actions are clear. The first step in solving this situation is the collection and monitoring of pollutants in water bodies to subsequently facilitate their treatment. Nonetheless, traditional sensing techniques are typically laboratory-based, leading to potential diminishment in analysis quality. In this paper, the most recent developments in micro- and nano-electrochemical devices for pollutant detection in wastewater are reviewed. The devices reviewed are based on a variety of electrodes and the sensing of three different categories of pollutants: nutrients and phenolic compounds, heavy metals, and organic matter. From these electrodes, Cu, Co, and Bi showed promise as versatile materials to detect a grand variety of contaminants. Also, the most commonly used material is glassy carbon, present in the detection of all reviewed analytes.  相似文献   
3.
Exosomes are nanovesicles secreted by most cellular types that carry important biochemical compounds throughout the body with different purposes, playing a preponderant role in cellular communication. Because of their structure, physicochemical properties and stability, recent studies are focusing in their use as nanocarriers for different therapeutic compounds for the treatment of different diseases ranging from cancer to Parkinson's disease. However, current bioseparation protocols and methodologies are selected based on the final exosome application or intended use and present both advantages and disadvantages when compared among them. In this context, this review aims to present the most important technologies available for exosome isolation while discussing their advantages and disadvantages and the possibilities of being combined with other strategies. This is critical since the development of novel exosome‐based therapeutic strategies will be constrained to the effectiveness and yield of the selected downstream purification methodologies for which a thorough understanding of the available technological resources is needed.  相似文献   
4.
The structural, electronic, and vibrational properties of two leading representatives of the Zn-based spinel oxides class, normal ZnX2O4 (X = Al, Ga, In) and inverse Zn2MO4 (M = Si, Ge, Sn) crystals, were investigated. In particular, density functional theory (DFT) was combined with different exchange-correlation functionals: B3LYP, HSE06, PBE0, and PBESol. Our calculations showed good agreement with the available experimental data, showing a mean percentage error close to 3% for structural parameters. For the electronic structure, the obtained HSE06 band-gap values overcome previous theoretical results, exhibiting a mean percentage error smaller than 10.0%. In particular, the vibrational properties identify the significant differences between normal and inverse spinel configurations, offering compelling evidence of a structure-property relationship for the investigated materials. Therefore, the combined results confirm that the range-separated HSE06 hybrid functional performs the best in spinel oxides. Despite some points that cannot be directly compared to experimental results, we expect that future experimental work can confirm our predictions, thus opening a new avenue for understanding the structural, electronic, and vibrational properties in spinel oxides.  相似文献   
5.
Journal of Solid State Electrochemistry - A novel material was developed using sol-gel chemistry and an environmental-friendly grafting process of clay nanoparticles. In a previous work of our...  相似文献   
6.
Hybrid materials in which reduced graphene oxide (rGO) is decorated with Au nanoparticles (rGO–Au NPs) were obtained by the in situ reduction of GO and AuCl4?(aq) by ascorbic acid. On laser excitation, rGO could be oxidized as a result of the surface plasmon resonance (SPR) excitation in the Au NPs, which generates activated O2 through the transfer of SPR‐excited hot electrons to O2 molecules adsorbed from air. The SPR‐mediated catalytic oxidation of p‐aminothiophenol (PATP) to p,p′‐dimercaptoazobenzene (DMAB) was then employed as a model reaction to probe the effect of rGO as a support for Au NPs on their SPR‐mediated catalytic activities. The increased conversion of PATP to DMAB relative to individual Au NPs indicated that charge‐transfer processes from rGO to Au took place and contributed to improved SPR‐mediated activity. Since the transfer of electrons from Au to adsorbed O2 molecules is the crucial step for PATP oxidation, in addition to the SPR‐excited hot electrons of Au NPs, the transfer of electrons from rGO to Au contributed to increasing the electron density of Au above the Fermi level and thus the Au‐to‐O2 charge‐transfer process.  相似文献   
7.
8.
Abstract

The objective of this study was to evaluate the antimicrobial effect of Agave fructans against the Salmonella Typhimurium in “in vitro” experiments. The result of the antimicrobial activity was 263.89?±?0, 414.95?±?12.83, 494.54?±?13.88, 522.29?±?0, 580.41?±?14.92?AU for 10, 20, 30, 40 and 50% of Agave fructans (AF) respectively. In addition, there is a significant effect on the growth of the bacteria with all the percentages of AF evaluated (p?<?0.001, R2?=?0.859) with respect to the control. The growth rate of Salmonella with 25% AF was statistically significant compared to the control (?0.7353?±?0.586, 0.0079?±?0.002?D.O./h, respectively; p?>?0.01). Agave fructans could be an alternative to prevent the infections caused by Salmonella.  相似文献   
9.
An efficient organocatalytic stereoselective reduction of β‐trifluoromethyl‐substituted nitroalkenes, mediated by 3,5‐dicarboxylic ester‐dihydropyridines (Hantzsch ester type), has been successfully developed. A multifunctional thiourea‐based (S)‐valine derivative was found to be the catalyst of choice, promoting the reaction in up to 97 % ee. The methodology has been applied to a wide variety of substrates, leading to the formation of differently substituted precursors of enantiomerically enriched β‐trifluoromethyl amines. The mechanism of the reaction and the mode of action of the metal‐free catalytic species were computationally investigated; on the basis of DFT transition‐state (TS) analysis, a model of stereoselection was also proposed.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号