首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9508篇
  免费   710篇
  国内免费   342篇
化学   2961篇
晶体学   32篇
力学   647篇
综合类   58篇
数学   4661篇
物理学   2201篇
  2024年   9篇
  2023年   155篇
  2022年   136篇
  2021年   273篇
  2020年   387篇
  2019年   335篇
  2018年   342篇
  2017年   384篇
  2016年   338篇
  2015年   305篇
  2014年   548篇
  2013年   1206篇
  2012年   562篇
  2011年   570篇
  2010年   444篇
  2009年   688篇
  2008年   693篇
  2007年   535篇
  2006年   429篇
  2005年   411篇
  2004年   305篇
  2003年   200篇
  2002年   161篇
  2001年   90篇
  2000年   99篇
  1999年   105篇
  1998年   81篇
  1997年   86篇
  1996年   93篇
  1995年   73篇
  1994年   64篇
  1993年   52篇
  1992年   46篇
  1991年   25篇
  1990年   16篇
  1989年   23篇
  1988年   16篇
  1987年   18篇
  1986年   17篇
  1985年   43篇
  1984年   50篇
  1983年   20篇
  1982年   25篇
  1981年   26篇
  1980年   17篇
  1979年   16篇
  1978年   12篇
  1977年   8篇
  1976年   7篇
  1973年   5篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
41.
4- chlorophenol is available as the fundamental basic compound of numerous manufactured organics. It is produced from various sources like herbicides, wood additives, oil industries, pharmaceutical drugs and so on. It can be removed from the effluent by various ways but most effective method is bioremediation. In present study, aerobic bacterial strain was isolated from soil that was contaminated with pharmaceutical xenobiotic compounds using enrichment technique with 500 ppm of 4-chlorophenol as a sole source of carbon and energy. Colonies were isolated after 24 h of incubation on petri plate by media enrichment with 500 ppm of 4- chlorophenol and serial dilution method. 18 colonies were isolated and examined for their ability to degrade 500 ppm of 4-chlorophenol. The most potent strain, C17 was able to remove nearly ~99.93% of 4-chlorophenol in 24 h, 37 °C temperature and 6.8 pH. Based on morphological, biochemical, nucleotide homology and phylogenetic analysis the strain was found to have maximum similarity (98.98%) with Bacillus timonensis strain 10403023<strong>.strong>  相似文献   
42.
The Ricci-Bourguignon flow (R-B flow) is a general geometric evolving equation, which includes or relates to some famous geometric flows, for example the Ricci flow and the Yamabe flow, etc. In this paper we shall prove that for the R-B flow evolving on stretchy="false" is="true">[s="true">0s="true">,s="true">Tstretchy="false" is="true">)" role="presentation" style="font-size: 90%; display: inline-block; position: relative;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="5.384ex" height="2.779ex" viewBox="0 -846.5 2318.2 1196.3" role="img" focusable="false" style="vertical-align: -0.812ex;" aria-hidden="true">stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)">s="true">se xlink:href="#MJMAIN-5B">se>s="true" transform="translate(278,0)">se xlink:href="#MJMAIN-30">se>s="true" transform="translate(779,0)">se xlink:href="#MJMAIN-2C">se>s="true" transform="translate(1224,0)">se xlink:href="#MJMATHI-54">se>s="true" transform="translate(1928,0)">se xlink:href="#MJMAIN-29">se>svg>s="http://www.w3.org/1998/Math/MathML">stretchy="false" is="true">[s="true">0s="true">,s="true">Tstretchy="false" is="true">)<script type="math/mml" id="MathJax-Element-1">stretchy="false" is="true">[s="true">0s="true">,s="true">Tstretchy="false" is="true">)script>, whose first eigenvalue sub is="true">s="true">s="true">&#x3BB;s="true">s="true">0sub>" role="presentation" style="font-size: 90%; display: inline-block; position: relative;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.409ex" height="2.317ex" viewBox="0 -747.2 1037.4 997.6" role="img" focusable="false" style="vertical-align: -0.582ex;" aria-hidden="true">stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)">s="true">s="true">s="true">se xlink:href="#MJMATHI-3BB">se>s="true" transform="translate(583,-150)">s="true">se transform="scale(0.707)" xlink:href="#MJMAIN-30">se>svg>s="http://www.w3.org/1998/Math/MathML">sub is="true">s="true">s="true">λs="true">s="true">0sub><script type="math/mml" id="MathJax-Element-2">sub is="true">s="true">s="true">λs="true">s="true">0sub>script> of the operator style="after" is="true">&#x2212;s="true">&#x25B3;style="after" is="true">+s="true">s="true">sup is="true">s="true">stretchy="false" is="true">(s="true">1style="after" is="true">&#x2212;stretchy="false" is="true">(s="true">nstyle="after" is="true">&#x2212;s="true">1stretchy="false" is="true">)s="true">&#x3C1;stretchy="false" is="true">)s="true">s="true">2sup>s="true">s="true">4stretchy="false" is="true">(s="true">1style="after" is="true">&#x2212;s="true">2stretchy="false" is="true">(s="true">nstyle="after" is="true">&#x2212;s="true">1stretchy="false" is="true">)s="true">&#x3C1;stretchy="false" is="true">)s="true">R" role="presentation" style="font-size: 90%; display: inline-block; position: relative;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="19.554ex" height="4.74ex" viewBox="0 -1343.3 8419.3 2040.9" role="img" focusable="false" style="vertical-align: -1.62ex;" aria-hidden="true">stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)">s="true">se xlink:href="#MJMAIN-2212">se>s="true" transform="translate(1000,0)">se xlink:href="#MJMAIN-25B3">se>s="true" transform="translate(2112,0)">se xlink:href="#MJMAIN-2B">se>s="true" transform="translate(2890,0)">sform="translate(120,0)">stroke="none" width="4528" height="60" x="0" y="220">s="true" transform="translate(253,580)">s="true">s="true">s="true">se transform="scale(0.707)" xlink:href="#MJMAIN-28">se>s="true" transform="translate(275,0)">se transform="scale(0.707)" xlink:href="#MJMAIN-31">se>s="true" transform="translate(629,0)">se transform="scale(0.707)" xlink:href="#MJMAIN-2212">se>s="true" transform="translate(1179,0)">se transform="scale(0.707)" xlink:href="#MJMAIN-28">se>s="true" transform="translate(1455,0)">se transform="scale(0.707)" xlink:href="#MJMATHI-6E">se>s="true" transform="translate(1879,0)">se transform="scale(0.707)" xlink:href="#MJMAIN-2212">se>s="true" transform="translate(2430,0)">se transform="scale(0.707)" xlink:href="#MJMAIN-31">se>s="true" transform="translate(2784,0)">se transform="scale(0.707)" xlink:href="#MJMAIN-29">se>s="true" transform="translate(3059,0)">se transform="scale(0.707)" xlink:href="#MJMATHI-3C1">se>s="true" transform="translate(3425,0)">se transform="scale(0.707)" xlink:href="#MJMAIN-29">se>s="true" transform="translate(3700,337)">s="true">se transform="scale(0.5)" xlink:href="#MJMAIN-32">se>s="true" transform="translate(60,-435)">s="true">se transform="scale(0.707)" xlink:href="#MJMAIN-34">se>s="true" transform="translate(353,0)">se transform="scale(0.707)" xlink:href="#MJMAIN-28">se>s="true" transform="translate(629,0)">se transform="scale(0.707)" xlink:href="#MJMAIN-31">se>s="true" transform="translate(983,0)">se transform="scale(0.707)" xlink:href="#MJMAIN-2212">se>s="true" transform="translate(1533,0)">se transform="scale(0.707)" xlink:href="#MJMAIN-32">se>s="true" transform="translate(1887,0)">se transform="scale(0.707)" xlink:href="#MJMAIN-28">se>s="true" transform="translate(2163,0)">se transform="scale(0.707)" xlink:href="#MJMATHI-6E">se>s="true" transform="translate(2587,0)">se transform="scale(0.707)" xlink:href="#MJMAIN-2212">se>s="true" transform="translate(3138,0)">se transform="scale(0.707)" xlink:href="#MJMAIN-31">se>s="true" transform="translate(3492,0)">se transform="scale(0.707)" xlink:href="#MJMAIN-29">se>s="true" transform="translate(3767,0)">se transform="scale(0.707)" xlink:href="#MJMATHI-3C1">se>s="true" transform="translate(4133,0)">se transform="scale(0.707)" xlink:href="#MJMAIN-29">se>s="true" transform="translate(7659,0)">se xlink:href="#MJMATHI-52">se>svg>s="http://www.w3.org/1998/Math/MathML">style="after" is="true">−s="true">△style="after" is="true">+s="true">s="true">sup is="true">s="true">stretchy="false" is="true">(s="true">1style="after" is="true">−stretchy="false" is="true">(s="true">nstyle="after" is="true">−s="true">1stretchy="false" is="true">)s="true">ρstretchy="false" is="true">)s="true">s="true">2sup>s="true">s="true">4stretchy="false" is="true">(s="true">1style="after" is="true">−s="true">2stretchy="false" is="true">(s="true">nstyle="after" is="true">−s="true">1stretchy="false" is="true">)s="true">ρstretchy="false" is="true">)s="true">R<script type="math/mml" id="MathJax-Element-3">style="after" is="true">−s="true">△style="after" is="true">+s="true">s="true">sup is="true">s="true">stretchy="false" is="true">(s="true">1style="after" is="true">−stretchy="false" is="true">(s="true">nstyle="after" is="true">−s="true">1stretchy="false" is="true">)s="true">ρstretchy="false" is="true">)s="true">s="true">2sup>s="true">s="true">4stretchy="false" is="true">(s="true">1style="after" is="true">−s="true">2stretchy="false" is="true">(s="true">nstyle="after" is="true">−s="true">1stretchy="false" is="true">)s="true">ρstretchy="false" is="true">)s="true">Rscript> for the initial metric s="true">gstretchy="false" is="true">(s="true">0stretchy="false" is="true">)" role="presentation" style="font-size: 90%; display: inline-block; position: relative;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="4.134ex" height="2.779ex" viewBox="0 -846.5 1780 1196.3" role="img" focusable="false" style="vertical-align: -0.812ex;" aria-hidden="true">stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)">s="true">se xlink:href="#MJMAIN-67">se>s="true" transform="translate(500,0)">se xlink:href="#MJMAIN-28">se>s="true" transform="translate(890,0)">se xlink:href="#MJMAIN-30">se>s="true" transform="translate(1390,0)">se xlink:href="#MJMAIN-29">se>svg>s="http://www.w3.org/1998/Math/MathML">s="true">gstretchy="false" is="true">(s="true">0stretchy="false" is="true">)<script type="math/mml" id="MathJax-Element-4">s="true">gstretchy="false" is="true">(s="true">0stretchy="false" is="true">)script> is positive, or s="true">Tstyle="after" is="true">&gt;s="true">0" role="presentation" style="font-size: 90%; display: inline-block; position: relative;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="5.897ex" height="1.971ex" viewBox="0 -747.2 2539.1 848.5" role="img" focusable="false" style="vertical-align: -0.235ex;" aria-hidden="true">stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)">s="true">se xlink:href="#MJMATHI-54">se>s="true" transform="translate(982,0)">se xlink:href="#MJMAIN-3E">se>s="true" transform="translate(2038,0)">se xlink:href="#MJMAIN-30">se>svg>s="http://www.w3.org/1998/Math/MathML">s="true">Tstyle="after" is="true">>s="true">0<script type="math/mml" id="MathJax-Element-5">s="true">Tstyle="after" is="true">>s="true">0script> is finite, an upper bound assumption of the scalar curvature implies a noncollapsing estimate of the volume, uniformly for all time. In order to derive this noncollapsing estimate, we firstly establish a logarithmic Sobolev inequality along the R-B flow, by using the monotone formula for the Perelman's functional, and then we can derive a Sobolev inequality along the R-B flow.  相似文献   
43.
Stoïlow’s theorem from 1928 states that a continuous, open, and light map between surfaces is a discrete map with a discrete branch set. This result implies that such maps between orientable surfaces are locally modeled by power maps <svg xmlns:xlink="http://www.w3.org/1999/xlink" width="6.881ex" height="2.432ex" viewBox="0 -945.9 2962.8 1047.3" role="img" focusable="false" style="vertical-align: -0.235ex;">stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)">s="true">s="true">se xlink:href="#MJMATHI-7A">se>s="true" transform="translate(746,0)">se xlink:href="#MJMAIN-21A6">se>s="true" transform="translate(2024,0)">s="true">s="true">se xlink:href="#MJMATHI-7A">se>s="true" transform="translate(469,362)">s="true">se transform="scale(0.707)" xlink:href="#MJMATHI-6B">se>svg><script type="math/mml" id="MathJax-Element-1">s="true">s="true">zs="true">↦sup is="true">s="true">s="true">zs="true">s="true">ksup>script> and admit a holomorphic factorization.The purpose of this expository article is to give a proof of this classical theorem having readers in mind that are interested in continuous, open and discrete maps.  相似文献   
44.
Achieving highly efficient phosphorescence in purely organic luminophors at room temperature remains a major challenge due to slow intersystem crossing (ISC) rates in combination with effective non‐radiative processes in those systems. Most room temperature phosphorescent (RTP) organic materials have O‐ or N‐lone pairs leading to low lying (n, π*) and (π, π*) excited states which accelerate k<sub>iscsub> through El‐Sayed's rule. Herein, we report the first persistent RTP with lifetimes up to 0.5 s from simple triarylboranes which have no lone pairs. RTP is only observed in the crystalline state and in highly doped PMMA films which are indicative of aggregation induced emission (AIE). Detailed crystal structure analysis suggested that intermolecular interactions are important for efficient RTP. Furthermore, photophysical studies of the isolated molecules in a frozen glass, in combination with DFT/MRCI calculations, show that (σ, B p)→(π, B p) transitions accelerate the ISC process. This work provides a new approach for the design of RTP materials without (n, π*) transitions.  相似文献   
45.
《Physics letters. A》2020,384(27):126729
The integrability nature of a nonparaxial nonlinear Schrödinger (NNLS) equation, describing the propagation of ultra-broad nonparaxial beams in a planar optical waveguide, is studied by employing the Painlevé singularity structure analysis. Our study shows that the NNLS equation fails to satisfy the Painlevé test. Nevertheless, we construct one bright solitary wave solution for the NNLS equation by using the Hirota's direct method. Also, we numerically demonstrate the stable propagation of the obtained bright solitary waves even in the presence of an external perturbation in a form of white noise. We then numerically investigate the coherent interaction dynamics of two and three bright solitary waves. Our study reveals interesting energy switching among the colliding solitary waves due to the nonparaxiality.  相似文献   
46.
《Physics letters. A》2020,384(9):126190
We propose a single-molecule electrical switches consisting of a photochromic dimethyldihydropyrene/cyclophanediene molecule sandwiched between two graphene electrodes and investigate the electronic transport by using density-functional theory and nonequilibrium Green's function methods. The “open” and “closed” isomers of the photochromic molecule are shown to have electrical switching behavior and negative differential resistance effect. Moreover, it is also found that the switching ratio between two different conductive states depends on the ambient temperature, and the device behaves as a stable electrical switch around room temperature, which is in agreement with a recent experimental study of another photochromic molecule diarylethene reported by Jia et al. (2016) [17].  相似文献   
47.
《Physics letters. A》2020,384(19):126401
By carrying out a computation in the Lifshitz tight-binding one-electron model, we obtain the energy spectrum and electrical conductance of graphene, in the presence of substitutional impurity atoms, thus assessing the influence of the latter. In the weak-scattering approximation, we study specific features of the electron energy spectrum in the gap region having width s="true">&#x3B7;stretchy="false" is="true">|s="true">&#x3B4;stretchy="false" is="true">|" role="presentation" style="font-size: 90%; display: inline-block; position: relative;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="3.512ex" height="2.779ex" viewBox="0 -846.5 1512 1196.3" role="img" focusable="false" style="vertical-align: -0.812ex;" aria-hidden="true">stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)">s="true">se xlink:href="#MJMATHI-3B7">se>s="true" transform="translate(503,0)">se xlink:href="#MJMAIN-7C">se>s="true" transform="translate(782,0)">se xlink:href="#MJMATHI-3B4">se>s="true" transform="translate(1233,0)">se xlink:href="#MJMAIN-7C">se>svg>s="http://www.w3.org/1998/Math/MathML">s="true">ηstretchy="false" is="true">|s="true">δstretchy="false" is="true">|<script type="math/mml" id="MathJax-Element-1">s="true">ηstretchy="false" is="true">|s="true">δstretchy="false" is="true">|script> and centered at the point , arising because of the ordering of substitutional impurity atoms on nodes of the crystal lattice. Here η is the parameter of ordering, δ is the difference of the scattering potentials of impurity atoms and carbon atoms, and y is the impurity concentration. It is shown that if the ordering parameter η is close to sub is="true">s="true">s="true">&#x3B7;s="true">s="true">maxsub>style="after" is="true">=s="true">2s="true">ys="true">,s="true">ystyle="after" is="true">&lt;s="true">1stretchy="false" is="true">/s="true">2" role="presentation" style="font-size: 90%; display: inline-block; position: relative;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="18.638ex" height="2.779ex" viewBox="0 -846.5 8024.8 1196.3" role="img" focusable="false" style="vertical-align: -0.812ex;" aria-hidden="true">stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)">s="true">s="true">s="true">se xlink:href="#MJMATHI-3B7">se>s="true" transform="translate(497,-253)">s="true">se transform="scale(0.707)" xlink:href="#MJMAIN-6D">se>se transform="scale(0.707)" xlink:href="#MJMAIN-61" x="833" y="0">se>se transform="scale(0.707)" xlink:href="#MJMAIN-78" x="1334" y="0">se>s="true" transform="translate(2192,0)">se xlink:href="#MJMAIN-3D">se>s="true" transform="translate(3248,0)">se xlink:href="#MJMAIN-32">se>s="true" transform="translate(3749,0)">se xlink:href="#MJMATHI-79">se>s="true" transform="translate(4246,0)">se xlink:href="#MJMAIN-2C">se>s="true" transform="translate(4691,0)">se xlink:href="#MJMATHI-79">se>s="true" transform="translate(5466,0)">se xlink:href="#MJMAIN-3C">se>s="true" transform="translate(6523,0)">se xlink:href="#MJMAIN-31">se>s="true" transform="translate(7023,0)">se xlink:href="#MJMAIN-2F">se>s="true" transform="translate(7524,0)">se xlink:href="#MJMAIN-32">se>svg>s="http://www.w3.org/1998/Math/MathML">sub is="true">s="true">s="true">ηs="true">s="true">maxsub>style="after" is="true">=s="true">2s="true">ys="true">,s="true">ystyle="after" is="true"><s="true">1stretchy="false" is="true">/s="true">2<script type="math/mml" id="MathJax-Element-2">sub is="true">s="true">s="true">ηs="true">s="true">maxsub>style="after" is="true">=s="true">2s="true">ys="true">,s="true">ystyle="after" is="true"><s="true">1stretchy="false" is="true">/s="true">2script>, the plot of the density of electron states has peaks on the edges of the energy gap. Those peaks correspond to impurity levels. As the ordering parameter η decreases, the impurity levels split into the impurity bands. The regions of localization of electron impurity states, which arise at the edges of the spectrum and edges of the energy gap, are investigated.  相似文献   
48.
A coordinate transformation technique between straight magnetic field line coordinate system (Ψ, θ) and Cartesian coordinate system (R, Z) is presented employing a Solov'ev solution of the Grad-Shafranov equation. Employing the equilibrium solution, the poloidal magnetic flux Ψ(R, Z) of a diverted tokamak, magnetic field line equation is solved computationally to find curves of constant poloidal angle θ, which provides us with explicit relations R&nbsp;=&nbsp;R(Ψ, θ) and Z&nbsp;=&nbsp;Z(Ψ, θ). Correspondingly, conversion from one coordinate to the other along particle trajectories in the vicinity of separatrix is demonstrated. Based on the magnetic structure, a finite element mesh is generated in a diverted tokamak geometry to solve Poisson's equation.  相似文献   
49.
We present a probabilistic Las Vegas algorithm for computing the local zeta function of a genus-<svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.116ex" height="1.855ex" viewBox="0 -498.8 480.5 798.9" role="img" focusable="false" style="vertical-align: -0.697ex;">stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)">s="true">se xlink:href="#MJMATHI-67">se>svg><script type="math/mml" id="MathJax-Element-1">s="true">gscript> hyperelliptic curve defined over <svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.409ex" height="2.548ex" viewBox="0 -747.2 1037.1 1096.9" role="img" focusable="false" style="vertical-align: -0.812ex;">stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)">s="true">s="true">s="true">se xlink:href="#MJAMS-46">se>s="true" transform="translate(611,-150)">s="true">se transform="scale(0.707)" xlink:href="#MJMATHI-71">se>svg><script type="math/mml" id="MathJax-Element-2">sub is="true">s="true">s="true">Fs="true">s="true">qsub>script> with explicit real multiplication (RM) by an order <svg xmlns:xlink="http://www.w3.org/1999/xlink" width="4.401ex" height="2.779ex" viewBox="0 -846.5 1894.7 1196.3" role="img" focusable="false" style="vertical-align: -0.812ex;">stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)">s="true">s="true">se xlink:href="#MJAMS-5A">se>s="true" transform="translate(834,0)">s="true">se xlink:href="#MJMAIN-5B">se>s="true" transform="translate(278,0)">se xlink:href="#MJMATHI-3B7">se>s="true" transform="translate(782,0)">se xlink:href="#MJMAIN-5D">se>svg><script type="math/mml" id="MathJax-Element-3">s="true">s="true">Zs="true">s="true">[s="true">ηs="true">]script> in a degree-<svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.116ex" height="1.855ex" viewBox="0 -498.8 480.5 798.9" role="img" focusable="false" style="vertical-align: -0.697ex;">stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)">s="true">se xlink:href="#MJMATHI-67">se>svg><script type="math/mml" id="MathJax-Element-4">s="true">gscript> totally real number field.It is based on the approaches by Schoof and Pila in a more favourable case where we can split the <svg xmlns:xlink="http://www.w3.org/1999/xlink" width="0.97ex" height="2.086ex" viewBox="0 -796.9 417.5 898.2" role="img" focusable="false" style="vertical-align: -0.235ex;">stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)">s="true">se xlink:href="#MJMAIN-2113">se>svg><script type="math/mml" id="MathJax-Element-5">s="true">ℓscript>-torsion into <svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.116ex" height="1.855ex" viewBox="0 -498.8 480.5 798.9" role="img" focusable="false" style="vertical-align: -0.697ex;">stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)">s="true">se xlink:href="#MJMATHI-67">se>svg><script type="math/mml" id="MathJax-Element-6">s="true">gscript> kernels of endomorphisms, as introduced by Gaudry, Kohel, and Smith in genus 2. To deal with these kernels in any genus, we adapt a technique that the author, Gaudry, and Spaenlehauer introduced to model the <svg xmlns:xlink="http://www.w3.org/1999/xlink" width="0.97ex" height="2.086ex" viewBox="0 -796.9 417.5 898.2" role="img" focusable="false" style="vertical-align: -0.235ex;">stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)">s="true">se xlink:href="#MJMAIN-2113">se>svg><script type="math/mml" id="MathJax-Element-7">s="true">ℓscript>-torsion by structured polynomial systems. Applying this technique to the kernels, the systems we obtain are much smaller and so is the complexity of solving them.Our main result is that there exists a constant <svg xmlns:xlink="http://www.w3.org/1999/xlink" width="5.268ex" height="1.971ex" viewBox="0 -747.2 2268.1 848.5" role="img" focusable="false" style="vertical-align: -0.235ex;">stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)">s="true">s="true">se xlink:href="#MJMATHI-63">se>s="true" transform="translate(711,0)">se xlink:href="#MJMAIN-3E">se>s="true" transform="translate(1767,0)">se xlink:href="#MJMAIN-30">se>svg><script type="math/mml" id="MathJax-Element-8">s="true">s="true">cstyle="after" is="true">>s="true">0script> such that, for any fixed <svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.116ex" height="1.855ex" viewBox="0 -498.8 480.5 798.9" role="img" focusable="false" style="vertical-align: -0.697ex;">stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)">s="true">se xlink:href="#MJMATHI-67">se>svg><script type="math/mml" id="MathJax-Element-9">s="true">gscript>, this algorithm has expected time and space complexity <svg xmlns:xlink="http://www.w3.org/1999/xlink" width="11.152ex" height="2.779ex" viewBox="0 -846.5 4801.4 1196.3" role="img" focusable="false" style="vertical-align: -0.812ex;">stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)">s="true">s="true">se xlink:href="#MJMATHI-4F">se>s="true" transform="translate(930,0)">se xlink:href="#MJMAIN-28" is="true">se>s="true" transform="translate(389,0)">s="true">s="true">s="true">se xlink:href="#MJMAIN-28">se>ss="qopname" is="true" transform="translate(389,0)">se xlink:href="#MJMAIN-6C">se>se xlink:href="#MJMAIN-6F" x="278" y="0">se>se xlink:href="#MJMAIN-67" x="779" y="0">se>s="true" transform="translate(1835,0)">se xlink:href="#MJMATHI-71">se>s="true" transform="translate(2296,0)">se xlink:href="#MJMAIN-29">se>s="true" transform="translate(2685,477)">s="true">se transform="scale(0.707)" xlink:href="#MJMATHI-63">se>se xlink:href="#MJMAIN-29" is="true" x="3481" y="0">se>svg><script type="math/mml" id="MathJax-Element-10">s="true">s="true">Os="true">s="true">(sup is="true">s="true">s="true">s="true">(ss="qopname" is="true">logs="true">qs="true">)s="true">s="true">csup>s="true">)script> as <svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.07ex" height="1.74ex" viewBox="0 -498.8 460.5 749.2" role="img" focusable="false" style="vertical-align: -0.582ex;">stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)">s="true">se xlink:href="#MJMATHI-71">se>svg><script type="math/mml" id="MathJax-Element-11">s="true">qscript> grows and the characteristic is large enough. We prove that <svg xmlns:xlink="http://www.w3.org/1999/xlink" width="5.268ex" height="2.202ex" viewBox="0 -747.2 2268.1 947.9" role="img" focusable="false" style="vertical-align: -0.466ex;">stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)">s="true">s="true">se xlink:href="#MJMATHI-63">se>s="true" transform="translate(711,0)">se xlink:href="#MJMAIN-2264">se>s="true" transform="translate(1767,0)">se xlink:href="#MJMAIN-39">se>svg><script type="math/mml" id="MathJax-Element-12">s="true">s="true">cstyle="after" is="true">≤s="true">9script> and we also conjecture that the result still holds for <svg xmlns:xlink="http://www.w3.org/1999/xlink" width="5.268ex" height="1.971ex" viewBox="0 -747.2 2268.1 848.5" role="img" focusable="false" style="vertical-align: -0.235ex;">stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)">s="true">s="true">se xlink:href="#MJMATHI-63">se>s="true" transform="translate(711,0)">se xlink:href="#MJMAIN-3D">se>s="true" transform="translate(1767,0)">se xlink:href="#MJMAIN-37">se>svg><script type="math/mml" id="MathJax-Element-13">s="true">s="true">cstyle="after" is="true">=s="true">7script>.  相似文献   
50.
《Physics letters. A》2020,384(28):126732
In this work, we investigate the electronic transport properties of M/SiC Schottky junctions (M=Ag, Au and Pd). The results show that the band structures of hydrogenated zigzag SiC nanoribbons (ZSiCNRs) and hydrogenated armchair SiC nanoribbons (ASiCNRs) are almost unaffected by their width changes. When the hydrogenated 7-ASiCNR is directly connected to the Ag, Au and Pd electrode, the transmission spectra of three metal-semiconductor junctions show that the Fermi level of metal is pinned to a fixed position in the semiconductor band gap of hydrogenated 7-ASiCNR. The nearly same rectifying current-voltage characteristics are found in three metal-semiconductor junctions. The average rectification ratios of three M/SiC Schottky junctions are all in the neighborhood of 10<sup>6sup>. In other word, the M/SiC Schottky junction has remarkable application prospect as the candidate for Schottky Diode.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号