首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8678篇
  免费   1936篇
  国内免费   957篇
化学   6945篇
晶体学   35篇
力学   833篇
综合类   49篇
数学   332篇
物理学   3377篇
  2023年   99篇
  2022年   164篇
  2021年   214篇
  2020年   326篇
  2019年   342篇
  2018年   380篇
  2017年   331篇
  2016年   386篇
  2015年   486篇
  2014年   671篇
  2013年   837篇
  2012年   655篇
  2011年   712篇
  2010年   563篇
  2009年   646篇
  2008年   615篇
  2007年   550篇
  2006年   539篇
  2005年   489篇
  2004年   449篇
  2003年   419篇
  2002年   256篇
  2001年   180篇
  2000年   171篇
  1999年   131篇
  1998年   125篇
  1997年   127篇
  1996年   93篇
  1995年   123篇
  1994年   87篇
  1993年   71篇
  1992年   55篇
  1991年   18篇
  1990年   43篇
  1989年   28篇
  1988年   23篇
  1987年   27篇
  1986年   17篇
  1985年   15篇
  1984年   21篇
  1983年   5篇
  1982年   15篇
  1981年   8篇
  1980年   6篇
  1979年   12篇
  1977年   7篇
  1976年   5篇
  1973年   4篇
  1971年   4篇
  1957年   6篇
排序方式: 共有10000条查询结果,搜索用时 203 毫秒
61.
A highly efficient Fe3O4@VitB1–Ag(I) magnetic catalyst has been obtained using surface modification of Fe3O4. To this end, silver chloride was immobilized on Fe3O4 nanoparticles via vitamin B1 biomolecules. The synthesized biocompatible magnetic catalyst was applied in an A3-coupling reaction in the presence of aldehyde, amine and phenyl acetylene under solvent-free conditions and afforded the desired products in excellent yields. Also, interactions between metal and ligand in the Fe3O4@VitB1–Ag(I) were studied using theoretical calculations.  相似文献   
62.
蔡泽民  毕勤胜 《力学季刊》2019,40(3):478-487
当周期激励频率远小于系统固有频率时,会存在快慢耦合效应,与单项激励不同,参外联合激励不仅会导致快子系统平衡曲线和分岔行为的复杂化,也会产生一些特殊的非线性现象,为此,本文以两耦合Hodgkin-Huxley细胞模型为例,引入周期参外联合激励,探讨在频域不同尺度耦合时该系统的簇发振荡的特点及其分岔机制.通过建立相应的快慢子系统,得到慢变参数变化下的快子系统的各种分岔模式以及相应的分岔行为,结合转换相图,揭示耦合系统随激励幅值变化时的动力学行为及其机理.研究表明,在激励幅值较小时,系统表现为概周期振荡,两频率分别近似于快子系统平衡曲线由Hopf分岔引起的两稳定极限环的振荡频率.概周期解随激励幅值的增加进入簇发振荡,导致这些簇发振荡的主要原因是在慢变参数变化的部分区间内,存在唯一稳定的平衡曲线,使得系统的轨迹逐渐趋向该平衡曲线,产生沉寂态,并随着慢变参数的变化,由分岔进入激发态.同时,快子系统中参与簇发振荡的稳定吸引子随激励幅值的变化也会不同,导致不同形式的簇发振荡.另外,与单项激励下的情形不同,联合激励时快子系统的部分稳定吸引子掩埋在其它稳定吸引子内,从而失去对簇发振荡的影响.  相似文献   
63.
An agro waste‐derived, ‘water extract of pomegranate ash’ (WEPA), has been utilized for the first time as a renewable medium for Pd(OAc)2‐catalysed Suzuki–Miyaura cross‐coupling at room temperature. This method offers a simple and sustainable synthesis of biaryls from aryl halides and arylboronic acids under ligand‐ and external base‐free aerobic and ambient conditions. This method has been found effective for both activated and unactivated aryl halides in the production of biaryls with moderate to nearly quantitative yields. The protocol shows high chemoselectivity over identical/similar reactive sites in aryl halides (i.e. selectivity over identical halogens or different halogens of aryl halides). This method exhibits high regioselectivity, i.e. the selective reactivity of a halogen over other identical halogens at different positions on the aromatic nucleus. Therefore, we disclose here a clean, benign, substantial chemo‐ and regioselective and highly economic alternative method for the palladium‐assisted synthesis of biaryls using an agro waste‐derived medium.  相似文献   
64.
A variety of heterobiaryl compounds have been synthesized by the Suzuki‐Miyaura coupling reactions of heteroaryl halides with potassium aryltrifluoroborates. Pd (OAc)2 was found to be highly efficient for the Suzuki‐Miyaura coupling reactions of various heteroaryl halides with potassium aryltrifluoroborates in aqueous systems, delivering the corresponding heterobiaryl compounds in good to excellent yields.  相似文献   
65.
The Perlin effect and its analog for fluorinated compounds (the fluorine Perlin-like effect) manifest on one-bond C─H (C─F for the fluorine Perlin-like effect) spin–spin coupling constants (SSCCs) in six-membered rings. These effects can be useful to probe the stereochemistry (axial or equatorial) of the C─H and C─F bonds, respectively. The origin of these effects has been debatable in the literature as being due to hyperconjugative interactions, dipolar effects, and induced current density. Accordingly, a variety of model compounds has been used to probe such effects since the cyclohexanone carbonyl group and the endocyclic heteroatom lone pairs play different roles on the above-mentioned effects. Thus, the 1JC─F SSCC in fluorinated lactams and lactones were theoretically studied to gain further insight on the nature of the fluorine Perlin-like effect. In addition, because the intramolecular α-effect has recently gained attention for its importance in the reactivity and stereoelectronic interactions in peroxide compounds, some fluorinated 1,2-dioxanes and 1,2-dithianes were studied to evaluate the role of the α-effect on the behavior of 1JC─F SSCCs. Differently from fluorinated ketones and ethers, the fluorine Perlin-like effect in the amides and esters cannot be explained by hyperconjugative or dipolar interactions alone, because the resonance in these groups affect the 1JC─F values. The O─O and S─S-containing systems exhibit a strong fluorine Perlin-like effect, but unlike the α-effect, this behavior cannot be explained neither by hyperconjugation nor by dipolar interactions alone; the spatial proximity of the C─F and O─O/S─S bonds is proposed to affect the magnitude of the 1JC─F SSCC.  相似文献   
66.
The chemical functionalization of carbon nanotubes is often a prerequisite prior to their use in various applications. The covalent grafting of 4,4,5,5-tetramethyl-1,3,2-dioxaborolane (BPin) functional groups directly on the surface of multi- and single-walled carbon nanotubes, activated by nucleophilic addition of nBuLi, was carried out. Thermogravimetric analysis (TGA) coupled with mass spectrometry, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ions mass spectrometry (ToF-SIMS) confirmed the efficiency of this methodology and proved the integrity and covalent grafting of the BPin functional groups. These groups were further reacted with various nucleophiles in the presence of a copper(II) source in the conditions of the aerobic Chan–Lam–Evans coupling. The resulting materials were characterized by TGA, XPS and ToF-SIMS. This route is efficient, reliable and among the scarce reactions that enable the direct grafting of heteroatoms at carbonaceous material surfaces.  相似文献   
67.
Halloysite nanoclay, Hal, was amine-functionalized and subsequently reacted with 2,4,6-trichloro-1,3,5-triazine, TCT, and ethylenediamine, EDA, to provide multinitrogen containing functionality on the surface of Hal. The resulting surface-modified Hal, Hal-2N-TCT-EDA, was then used for immobilization of Pd nanoparticles and affording a heterogeneous catalyst, Pd@Hal-2N-TCT-EDA, with utility for copper and ligand-free Sonogashira coupling of alkynes and aryl halides. The results established the efficiency of this protocol in terms of product yield, ecofriendly nature, and reaction time. Study of the reusability of the catalyst confirmed that the catalyst could be recovered and recycled up to seven times with slight loss of catalytic activity and Pd leaching, indicating the efficiency of Hal-2N-TCT-EDA for embedding Pd nanoparticles. To elucidate the role of the number of surface nitrogens on the catalytic performance, the catalytic activity, and recyclability of the catalyst was compared with those of Hal-2N and Hal-2N-TCT. It was found that more surface nitrogen atoms gave higher loading of Pd and lower Pd leaching. This result confirms the contribution of surface nitrogens to anchor the Pd species and suppress leaching.

  相似文献   

68.
A palladium–fibroin complex (Pd/Fib.) was prepared by the addition of sonicated fibroin fiber in water to palladium acetate solution. Pd (OAc)2 was absorbed by fibroin and reduced with NaBH4 at room temperature to the Pd(0) nanoparticles. Powder‐X‐ray diffraction, scanning electron microscopy–energy‐dispersive X‐ray spectroscopy, Fourier transform‐infrared, CHN elemental analysis and inductively coupled plasma‐atomic emission spectroscopy were carried out to characterize the Pd/Fib. catalyst. Catalytic activity of this finely dispersed palladium was examined in the Heck coupling reaction. The catalytic coupling of aryl halides (‐Cl, ‐Br, ‐I) and olefins led to the formation of the corresponding coupled products in moderate to high yields under air atmosphere. A variety of substrates, including electron‐rich and electron‐poor aryl halides, were converted smoothly to the targeted products in simple procedure. Heterogeneous supported Pd catalyst can be recycled and reused several times.  相似文献   
69.
Room temperature Suzuki cross‐coupling polymerization of aryl dibromides/diiodides with aryldiboronic acids/acid esters with t‐Bu3P‐coordinated 2‐phenylaniline‐based palladacycle complex, [2′‐(amino‐kN)[1,1′‐biphenyl]‐2‐yl‐kC]chloro(tri‐t‐butylphosphine)palladium, as a general precatalyst is described. Such room temperature Suzuki cross‐coupling polymerization is achieved by employing six equivalents or more of the base and affords polymers within an hour, with the yields and the molecular weights in general comparable to or higher than reported results that required higher reaction temperature and/or longer polymerization time. Our study provides a general catalyst system for the room temperature Suzuki cross‐coupling polymerization of aryl dibromides/diiodides with aryldiboronic acids/acid esters and paves the road for the investigation of employing other monodentate ligand‐coordinated palladacycle complexes including other electron‐rich monophosphine‐coordinated ones for room temperature cross‐coupling polymerizations. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1606–1611  相似文献   
70.
In the present study, biosynthesis of CuO nanoparticles using a rapid, eco‐friendly, cost‐effective and efficient method has been reported employing aqueous Euphorbia maculata extract as mild, renewable and non‐toxic reducing and capping agents without adding any surfactants. The biogenic and green method has some benefits compared to conventional physical and chemical methods. It is simple, cheap and environmentally friendly. The biosynthesized CuO NP displayed a color change pattern (from sky blue to black) on preparation and presented its respective broad peak at 365 nm, which was analyzed by UV–Vis spectroscopy. Using the FT‐IR analysis, biomolecules in E. maculata extract which are responsible for bioreduction activity and synthesize of CuO NP, were identified. The XRD, EDX and FESEM results confirmed the successful synthesis of CuO nanoparticles of 18 nm sizes, with spherical and sponge crystal structure. The catalytic activity of biosynthesized CuO NPs was studied in C‐S cross‐coupling reaction. This method has the advantages of high yields, easy work‐up, and simple reusability. The recovered CuO NP can be reused four times without any considerable loss of its catalytic activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号