首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   262篇
  免费   31篇
  国内免费   85篇
化学   293篇
晶体学   26篇
力学   3篇
综合类   3篇
物理学   53篇
  2023年   2篇
  2022年   4篇
  2021年   13篇
  2020年   8篇
  2019年   9篇
  2018年   10篇
  2017年   18篇
  2016年   25篇
  2015年   13篇
  2014年   15篇
  2013年   40篇
  2012年   18篇
  2011年   24篇
  2010年   14篇
  2009年   28篇
  2008年   20篇
  2007年   23篇
  2006年   17篇
  2005年   17篇
  2004年   13篇
  2003年   14篇
  2002年   9篇
  2001年   8篇
  2000年   4篇
  1999年   3篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
排序方式: 共有378条查询结果,搜索用时 359 毫秒
51.
A new surface modification method of hydroxyapatite nanoparticles (n‐HA) by surface grafting reaction of L ‐lactic acid oligomer with carboxyl terminal (LAc oligomer) in the absence of any catalyst was developed. The LAc oligomer with a certain molecular weight was directly synthesized by condensation of L ‐lactic acid. Surface‐modified HA nanoparticles (p‐HA) were attested by Fourier transformation infrared spectroscopy, 31P MAS‐NMR, and thermal gravimetric analysis (TGA). The results showed that LAc oligomer could be grafted onto the n‐HA surface by forming a Ca carboxylate bond. The grafting amount of LAc oligomer was about 13.3 wt %. The p‐HA/PLLA composites showed good mechanical properties and uniform microstructure. The tensile strength and modulus of the p‐HA/PLLA composite containing 15 wt % of p‐HA were 68.7 MPa and 2.1 GPa, respectively, while those of the n‐HA/PLLA composites were 43 MPa and 1.6 GPa, respectively. The p‐HA/PLLA composites had better thermal stability than n‐HA/PLLA composites and neat PLLA had, as determined by isothermal TGA. The hydrolytic degradation behavior of the composites in phosphate buffered saline (PBS, pH 7.4) was investigated. The p‐HA/PLLA composites lost their mechanical properties more slowly than did n‐HA/PLLA composites in PBS because of their reinforced adhesion between the HA filler and PLLA matrix. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5177–5185, 2005  相似文献   
52.
碳酸钙晶须合成过程中可溶性磷酸盐的作用机理研究   总被引:2,自引:0,他引:2  
以可溶性磷酸盐为控制剂,一步碳化法制备了文石相碳酸钙晶须。借助于XRD和FTIR,分析了可溶性磷酸盐在碳酸钙晶须合成过程中的作用机理。研究结果表明:通入CO2进行碳化反应前,可溶性磷酸盐与Ca(OH)2反应生成了热力学上最稳定的磷酸钙化合物——羟基磷灰石;在通入CO2初期,[CO32-(OH)]进入到羟基磷灰石的晶格,部分替代[PO43-],生成碳酸羟基磷灰石,然后以此为结晶中心诱导文石相的异相成核,Ca2+、CO32-不断叠加,进而生长为碳酸钙晶须。  相似文献   
53.
Initial cell evaluation on alginate/hydroxyapatite block was investigated. Sodium alginate with 1, 3 and 5% concentration was obtained via neutral extraction of locally obtained brown seaweed, Sargassumpolycystum. Commercially available hydroxyapatite (HAp) powder was pressed uniaxially at 3 MPa to obtain the HAp block. The HAp block was then sintered at 900̊C. The sintered HAp block was then immersed in the sodium alginate solution at different concentration for 24 hours under vacuum condition. Morphological observations show that normal cell growth was observed on alginate/HAp blockafter post treatment for day 1 and 2. However, the cell starts to show some distinct morphological changes when compared to the control cells for day 5 and 7. Cell viability assay results shows that a consistent cell growth was obtained with HAp block incorporated with 3 and 5% sodium alginate. While HAp block without the incorporation of sodium alginate and HAp block incorporated with 1% sodium alginate concentration shows inconsistent cell growth. Initial cell evaluation results suggest that alginate/HAp block shows no toxicity on cell attachment and proliferation.  相似文献   
54.
Modulus–porosity relationships are critical for engineered bone tissue scaffold materials such as hydroxyapatite (HA), where porosity is essential to biological function. Resonant ultrasound spectroscopy (RUS) measurements revealed that the Young's modulus, E, and shear modulus, G, of both alumina and HA decrease monotonically with increasing volume fraction porosity, P, for 0.06 < P < 0.39 (alumina) and 0.05 < P < 0.51 (HA). Although the elastic moduli of porous materials have been measured by a number of different ultrasonic resonance techniques (of which the RUS technique is one example) and over the last decade the elastic moduli of many solids have been measured by the RUS technique, this study is the first systematic RUS study of porous materials. Comparison of E versus P data for alumina (which has been studied extensively) with literature data from several measurement techniques indicates the RUS technique is effective for modulus–porosity measurements. Another key result is that although the HA specimens included in this study have a unimodal pore size distribution, the details of the decrease in E and G with increasing P agree well with literature data for HA with both unimodal and bimodal pore size distributions. In addition, Poisson's ratio exhibits a local minimum in the porosity range of 0.2 < P < 0.25 for both HA and alumina, which may be related to the pore morphology evolution during sintering.  相似文献   
55.
With the expansion of human activities, there are more and more living areas adjacent to industrial and/or agricultural activities such as chemical processes, petroleum processes, paint finishing, food processing, livestock farming, composting plants etc. Bad odor is part of several nuisances caused by industrial and/or agricultural activities. Hydrogen sulfide (H2S) is a typical odorous molecule which causes foul odor at very low concentration. This molecule is formed in different industrial installations, in particular in coal combustion, and petrochemical refinery. The separation and/or transformation of H2S from gas phase to odorless products are important processes for sustainable development. In this paper, we communicate the preparation of new sorbents for the sorption of H2S from a synthetic gas effluent. These sorbents consist in an inorganic phase (hydroxyapatite) as host particles, and well-dispersed particles of a metal oxide as guest particles which are the active phase for the removal of H2S. At room conditions, iron, lead, and zinc doped calcium phosphates were found to be effective for the removal of H2S. The performance of the sorbents depends on preparation method and the nature of active phases. This opens new prospects for the treatment of H2S from gas phase.  相似文献   
56.
《Composite Interfaces》2013,20(2):151-165
This study compared bony fusion in autologous bone grafting with HA/ZrO2 graded composite in terms of mineral depositions, histological characteristics, and biomechanical properties of bonding interface. Twenty-four beagle dogs were established four places of bone defect in two adjacent lumbar vertebral bodies (L4 and L5) and were successively implanted with HA/ZrO2 graded composite (group A), HA/ZrO2 unilayer composite (group B), pure ZrO2 (group C), and pure HA (group D). After operation, lumbar vertebral specimens were respectively harvested per time at week 6, 12, and 16. Then, the bony fusion interface was evaluated by fluorescence microscope and computer image analysis system to measure mineral apposition rates (MAR). Histological analysis of specimen was used to determine bone bonding rates (BBR) and possible foreign body reactions associated with each groups. And interface bonding force between implant and autogenous bone was quantified with biomechanical push-out test. Compared with other groups, group A led to significantly higher MAR from week 6 to 12 (p < 0.05). Histologically, new bony tissue and hyaline cartilage were seen around the HA/ZrO2 graded composite, accompanied by mild chronic inflammation. And the BBR of HA/ZrO2 graded composite were the highest (p < 0.05), while reaching (90.3 ± 3.8) % at week 16. Moreover, the biomechanical push-out tests revealed that the maximum interface shear strength of group A was respectively (2.64 ± 0.16) MPa, (2.95 ± 0.19) MPa, and (3.45 ± 0.23) MPa at week 6, 12, and 16, which all possessed significantly statistical differences with other three groups (p < 0.05).  相似文献   
57.
58.
Molecular self‐assembly is emerging as a viable ‘bottom‐up’ approach to build stable organic/inorganic nanometer‐scale blocks. Herein, under the conditions of appropriate pH and ionic strength, soy globulin 7S or 11S were coprecipitated with hydroxyapatite (HAp) or aragonite (Arag), respectively, to fabricate two organic/inorganic hybrids: 7S/HAp and 11S/Arag. Results from high‐resolution transmission electron microscopy show that the hybrids exhibit a nanosized core–shell structure with globulin monomer 7S or 11S as core and HAp or Arag as shells. 7S/HAp and 11S/Arag present a disk and hexagon shape, respectively. After calcinations, monodispersed HAp without support from globulins existed as nanospheres. It was revealed that the globulin as host induces the self‐assembly and growth layer by layer of HAp or Arag nanocrystals. The factors of molecular recognition and surface potential definitely affected the size and shape of the hierarchical blocks. This work provided a novel pathway to controllably synthesize a wide variety of precise plant protein/biomineral hybrid biomaterials.

  相似文献   

59.
A prepared transparent HA solution was coated on Ti6Al4V substrates by a spin-coating technique. The crystallization of the sol-gel-derived HA coated on the metallic substrates could be done at relatively low firing temperatures (as low as 600°C). The characteristics of the HA-coated layer were dependent on the surface roughness of substrates and heating conditions such as firing temperature, holding time, heating rate, and atmosphere. The heat treatment at a slow heating rate (<2°C/min.) and a long heating time (>10 hrs) at 600°C in air produced the uniform surface and improved the crystallinity. The HA layer coated on 20 m grit-blasted substates was more uniform and had fever cracks after firing, compared with that coated on 100 m grit-blasted rougher substrates.  相似文献   
60.
Nano-hydroxyapatite (HA)/poly(l-lactide) (PLLA) composite microspheres with relatively uniform size distribution were prepared by a solid-in-oil-in-water (s/o/w) emusion solvent evaporation method. The encapsulation of the HA nanopaticles in microshperes was significantly improved by grafting PLLA on the surface of the HA nanoparticles (p-HA) during emulsion process. This procedure gave a possibility to obtain p-HA/PLLA composite microspheres with uniform morphology and the encapsulated p-HA nanoparticle loading reached up to 40 wt% (33 wt% of pure HA) in the p-HA/PLLA composite microspheres. The microstructure of composite microspheres from core-shell to single phase changed with the variation of p-HA to PLLA ratios. p-HA/PLLA composite microspheres with the diameter range of 2–3 μm were obtained. The entrapment efficiency of p-HA in microspheres could high up to 90 wt% and that of HA was only 13 wt%. Surface and bulk characterizations of the composite microspheres were performed by measurements such as wide angle X-ray diffraction (WAXD), thermal gravimetric analysis (TGA), environmental scanning electron microscope (ESEM) and transmission electron microscopy (TEM).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号