首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117472篇
  免费   11251篇
  国内免费   18201篇
化学   102092篇
晶体学   3182篇
力学   2879篇
综合类   828篇
数学   10718篇
物理学   27225篇
  2024年   99篇
  2023年   1538篇
  2022年   1799篇
  2021年   3282篇
  2020年   3762篇
  2019年   4476篇
  2018年   3237篇
  2017年   4657篇
  2016年   4354篇
  2015年   4048篇
  2014年   5264篇
  2013年   9974篇
  2012年   7222篇
  2011年   7851篇
  2010年   6475篇
  2009年   7679篇
  2008年   7671篇
  2007年   7730篇
  2006年   7117篇
  2005年   6422篇
  2004年   6149篇
  2003年   4976篇
  2002年   4911篇
  2001年   3527篇
  2000年   3329篇
  1999年   2638篇
  1998年   2351篇
  1997年   2030篇
  1996年   1662篇
  1995年   1681篇
  1994年   1507篇
  1993年   1183篇
  1992年   1078篇
  1991年   780篇
  1990年   563篇
  1989年   536篇
  1988年   475篇
  1987年   331篇
  1986年   283篇
  1985年   274篇
  1984年   250篇
  1983年   120篇
  1982年   200篇
  1981年   262篇
  1980年   235篇
  1979年   242篇
  1978年   179篇
  1977年   146篇
  1976年   117篇
  1973年   74篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
51.
The composition of fluorescent polymer nanoparticles, commonly referred to as carbon dots, synthesized by microwave-assisted reaction of citric acid and ethylenediamine was investigated by 13C, 13C{1H}, 1H─13C, 13C{14N}, and 15N solid-state nuclear magnetic resonance (NMR) experiments. 13C NMR with spectral editing provided no evidence for significant condensed aromatic or diamondoid carbon phases. 15N NMR showed that the nanoparticle matrix has been polymerized by amide and some imide formation. Five small, resolved 13C NMR peaks, including an unusual ═CH signal at 84 ppm (1H chemical shift of 5.8 ppm) and ═CN2 at 155 ppm, and two distinctive 15N NMR resonances near 80 and 160 ppm proved the presence of 5-oxo-1,2,3,5-tetrahydroimidazo[1,2-a]pyridine-7-carboxylic acid (IPCA) or its derivatives. This molecular fluorophore with conjugated double bonds, formed by a double cyclization reaction of citric acid and ethylenediamine as first shown by Y. Song, B. Yang, and coworkers in 2015, accounts for the fluorescence of the carbon dots. Cross-peaks in a 1H─13C HETCOR spectrum with brief 1H spin diffusion proved that IPCA is finely dispersed in the polyamide matrix. From quantitative 13C and 15N NMR spectra, a high concentration (18 ± 2 wt%) of IPCA in the carbon dots was determined. A pronounced gradient in 13C chemical-shift perturbations and peak widths, with the broadest lines near the COO group of IPCA, indicated at least partial transformation of the carboxylic acid of IPCA by amide or ester formation.  相似文献   
52.
The structure and rotational barrier for the mesityl-silicon bond of 2,2-dimesityl-1,1,1,3,3,3-hexamethyltrisilane have been investigated by 1H- and 13C-variable temperature nuclear magnetic resonance (NMR) as well as by density functional theory structural calculations. The calculations show that the lowest energy structure has C2 symmetry with nonequivalent ortho methyl groups, consistent with the crystal structure and solution NMR. The nonequivalent ortho methyl groups exchange through a Cs transition state with a calculated relative free energy of 11.0 kcal mol−1. The barrier for this rotation found by dynamic NMR is 13.4 ± 0.2 kcal mol−1 at 298 K.  相似文献   
53.
Two new divalent copper (C1) and zinc (C2) chelates having the formulae [M(PIMC)2] (where M = Cu(II), Zn(II) and PIMC = Ligand [(E)-3-(((3-hydroxypyridin-2-yl)imino)methyl)-4H-chromen-4-one] were obtained and characterized by several techniques. Structures and geometries of the synthesized complexes were judged based on the results of alternative analytical and spectral tools supporting the proposed formulae. IR spectral data confirmed the coordination of the ligands to the copper and zinc centers as monobasic tridentate in the enol form. Thermal analysis, UV-Vis spectra and magnetic moment confirmed the geometry around the copper center to be tetrahedral, square pyramidal and octahedral. Study of the binding ability of the synthesized compounds with Circulating tumor DNA (CT-DNA) bas been evaluated applying UV-Vis spectral titration and viscosity measurements. The copper and zinc oxides were achieved from the copper and zinc nano-particles structures Schiff base complexes as the raw material after calcination for 5 hr at 600°C. On the other hand, synthesized of C1 and C2 NPs were used as suitable precursors to the preparation of CuO and ZnO NPs. Finally, the synthesized of the two complexes exhibited enhanced activity against the tested bacterial (Staphylococcus aureus and Escherichia Coli) and fungal strains (Candida albicans and Aspergillus fumigatus) as compared to HPIMC. Among all these synthesized compounds, C1 exhibits good cleaving ability compared to other newly synthesized C2.  相似文献   
54.
Because of its unpredictable side effects and efficacy, the anticancer drug docetaxel (DTX) requires improved characterisation of its pharmacokinetic profiles through population pharmacokinetic studies. A sensitive and rugged LC–MS/MS method for the detection of DTX in human plasma was developed and optimised using paclitaxel as an internal standard (IS). The plasma samples underwent rapid extraction using hybrid solid-phase extraction-protein precipitation. The analyte and IS were separated with an isocratic system on a Zorbax Eclipse Plus C18 column using water containing 0.05% acetic acid along with 20 μM of sodium acetate and methanol (30/70, v/v) as the mobile phase. Quantification was performed using a triple quadrupole mass spectrometer through multiple reaction monitoring in positive mode, using the m/z 830.3 → 548.8 and m/z 876.3 → 307.7 transitions for DTX and paclitaxel, respectively. The range of the calibration curve was 1–500 ng/mL for DTX, and the linear correlation coefficient was >0.99. The accuracies ranged from −4.6 to 4.2%, and the precision was no higher than 7.0% for the analytes. No significant matrix effect was observed. Both DTX and the IS showed considerable recovery. This method was finally applied to the establishment of a population pharmacokinetic model to optimise the clinical use of DTX.  相似文献   
55.
Larotrectinib is a first-generation tropomyosin kinase inhibitor, approved for the treatment of solid tumors. In this paper, we present a validated dried blood spot (DBS) method for the quantitation of larotrectinib from mouse blood using HPLC–MS/MS, which was operated under multiple reaction monitoring mode. To the DBS disc cards, acidified methanol enriched with internal standard (IS; enasidenib) was added and extracted using tert-butyl methyl ether as an extraction solvent with sonication. Chromatographic separation of larotrectinib and the IS was achieved on an Atlantis dC18 column using 10 mm ammonium formate–acetonitrile (30:70, v/v) delivered at a flow-rate of 0.80 ml/min. Under these optimized conditions, the retention times of larotrectinib and the IS were ~0.93 and 1.37 min, respectively. The total run time was 2.50 min. Larotrectinib and the IS were analyzed using positive ion scan mode and parent–daughter mass to charge ion (m/z) transitions of 429.1 → 342.1 and 474.1 → 267.1, respectively, were used for the quantitation. The calibration range was 1.06–5,080 ng/ml. No matrix effect or carryover was observed. Hematocrit did not influence DBS larotrectinib concentrations. All of the validation parameters met the acceptance criteria. The applicability of the validated method was shown in a mouse pharmacokinetic study.  相似文献   
56.
Metabolomics is a potential tool for the discovery of new biomarkers in the early diagnosis of diseases. An ultra-fast gas chromatography system equipped to an electronic nose detector (FGC eNose) was used to identify the metabolomic profile of Volatile Organic Compounds (VOCs) in type 2 diabetes (T2D) urine from Mexican population. A cross-sectional, comparative, and clinical study with translational approach was performed. We recruited twenty T2D patients and twenty-one healthy subjects. Urine samples were taken and analyzed by FGC eNose. Eighty-eight compounds were identified through Kovats's indexes. A natural variation of 30% between the metabolites, expressed by study groups, was observed in Principal Component 1 and 2 with a significant difference (p < 0.001). The model, performed through a Canonical Analysis of Principal coordinated (CAP), allowed a correct classification of 84.6% between healthy and T2D patients, with a 15.4% error. The metabolites 2-propenal, 2-propanol, butane- 2,3-dione and 2-methylpropanal, were increased in patients with T2D, and they were strongly correlated with discrimination between clinically healthy people and T2D patients. This study identified metabolites in urine through FGC eNose that can be used as biomarkers in the identification of T2D patients. However, more studies are needed for its implementation in clinical practice.  相似文献   
57.
Poly(methyl methacrylate) (PMMA) nanoparticles with a sensitive CO2‐responsive hydrophilic/hydrophobic surface that confers controlled dispersion and aggregation in water were prepared by emulsion polymerization at 50 °C under CO2 bubbling using amphiphilic diblock copolymers of 2‐dimethylaminoethyl methacrylate (DMAEMA) and N‐isopropyl acrylamide (NIPAAm) as an emulsifier. The amphiphilicity of the hydrophobic–hydrophilic diblock copolymer at 50 °C was triggered by CO2 bubbling in water and enabled the copolymer to serve as an emulsifier. The resulting PMMA nanoparticles were spherical, approximately 100 nm in diameter and exhibited sensitive CO2/N2‐responsive dispersion/aggregation in water. Using copolymers with a longer PNIPAAm block length as an emulsifier resulted in smaller particles. A higher concentration of copolymer emulsifier led to particles with a stickier surface. Given its simple preparation and reversible CO2‐triggered amphiphilic behavior, this newly developed block copolymer emulsifier offers a highly efficient route toward the fabrication of sensitive CO2‐stimuli responsive polymeric nanoparticle dispersions. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2149–2156  相似文献   
58.
59.
Kinetics and mechanism of the gas-phase reaction of CH3C(O)OCH(CH3)CH2OCH3 (MPA) with OH radicals in the presence of O2 and NO have been investigated theoretically by performing a high and reliable level of theory, viz., CCSD(T)/6-311?+?G(d,p)//BH&HLYP/6-311++G(d,p)?+?0.9335×ZPE. The calculations predict that the H-abstraction from the ?CH2?O? position of MPA is the most facile channel, which leads to the formation of the corresponding alkoxy radicals CH3C(O)OCH(CH3)C(O ?)HOCH3 under atmospheric conditions. This activated radicals CH3C(O)OCH(CH3)C(O ?)HOCH3 will undergo further rearrangement, fragmentation and oxidative reactions and predominantly leads to the formation of various products (methyl formate HC(O)OCH3 and acetic anhydride CH3C(O)OC(O)CH3). In the presence of water, acetic anhydride can convert into acetic acid CH3C(O)OH via the hydrolysis reaction. The calculated total rate constants over the temperature range 263–372?K are used to derive a negative activation energy (Ea= ?5.88 kJ/mol) and an pre-exponential factor (A?=?1.78×10?12 cm3 molecule?1 s?1). The obtained Arrhenius parameters presented here are in strong agreement with the experimental values. Moreover, the temperature dependence of the total rate constant over a temperature range of 263?1000?K can be described by k?=?5.60 × 10?14×(T/298?K)3.4×exp(1725.7?K/T) cm3 molecule?1 s?1.  相似文献   
60.
New thermoelectric materials, n-type Bi6Cu2Se4O6 oxyselenides, composed of well-known BiCuSeO and Bi2O2Se oxyselenides, are synthesized with a simple solid-state reaction. Electrical transport properties, microstructures, and elastic properties are investigated with an emphasis on thermal transport properties. Similar to Bi2O2Se, it is found that the halogen-doped Bi6Cu2Se4O6 possesses n-type conducting transports, which can be improved via Br/Cl doping. Compared with BiCuSeO and Bi2O2Se, an extremely low thermal conductivity can be observed in Bi6Cu2Se4O6. To reveal the origin of low thermal conductivity, elastic properties, sound velocity, Grüneisen parameter, and Debye temperature are evaluated. Importantly, the calculated phonon mean free path of Bi6Cu2Se4O6 is comparable to the interlayer distance for BiO─CuSe and BiO─Se layers, which is ascribed to the strong interlayer phonon scattering. Contributing from the outstanding low thermal conductivity and improved electrical transport properties, the maximum ZT ≈0.15 at 823 K and ≈0.11 at 873K are realized in n-type Bi6Cu2Se3.2Br0.8O6 and Bi6Cu2Se3.6Cl0.4O6, respectively, indicating the promising thermoelectric performance in n-type Bi6Cu2Se4O6 oxyselenides.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号