首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In the search of effective bioactive compounds, Co(II) ( C1 ) and Cd(II) ( C2 ) complexes of the type [M(FMAPIMP)(H2O)Cl].nH2O (where M = Co(II); n = 2, Cd(II); n = 3, and FMAPIMP = ligand[2-((E)-((2-(((E)-furan-2-ylmethylene)amino)phenyl)imino)methyl)phenol]) were synthesized and characterized using elemental analysis, UV–Vis., cyclic voltammetry, Fourier-transform infrared (FT-IR), nuclear magnetic resonance, and mass spectral studies. The thermal stability of nano-sized Co(II) and Cd(II) complexes was studied using thermogravimetric analysis (TGA). Cobalt and cadmium oxides were synthesized using cobalt and cadmium nanoparticle (NP) structure Schiff base complexes as the raw material after calcination for 5 h at 600 °C. According to the results, Co(II) and Cd(II) complexes with mole ratio 1:1 of metal: H-FMAPIMP which octahedral are the most probable geometry for it. On the contrary, synthesized C1 and C2 NPs were used as suitable precursors for the preparation of CoO and CdO NPs. The obtained NPs were characterized using FT-IR, UV–Vis., TGA, powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy techniques. PXRD analysis revealed that the obtained oxides were crystalline and corresponded to CoO and CdO phases. Crystal size, shape, and morphology were determined using SEM and TEM. H-FMAPIMP and its two complexes ( C1 and C2 ) were tested against human ovarian cancer cell line (PA-1). The synthesized Co(II) and Cd(II) complexes exhibited enhanced activity against the tested bacterial (Staphylococcus aureus and Escherichia Coli) and fungal strains (Candida albicans and Aspergillus fumigatus) as compared to H-FMAPIMP. The results of the DNA-cleavage activity indicated that the ligand and its two complexes can cleave calf thymus-DNA at different degrees. Further, antituberculosis activity was performed using microplate alamarBlue assay. Among all these synthesized compounds, C1 exhibited good cleaving ability compared to the newly synthesized C2 . Finally, the geometry of H-FMAPIMP and its Co(II) and Cd(II) complexes was optimized using molecular modeling.  相似文献   

2.
Three new vic-dioximes, [L1H2], N-(4-ethylphenyl)amino-1-acetyl-1-cyclohexenylglyoxime, [L2H2], N-(4-butylphenyl)amino-1-acetyl-1-cyclohexenylglyoxime, and [L3H2], N-(4-methoxyphenyl)amino-1-acetyl-1-cyclohexenylglyoxime were synthesized from 1-acetyl-1-cyclohexeneglyoxime and the corresponding substituted aromatic amines. Metal complexes of these ligands were also synthesized with Ni(II), Cu(II), and Co(II) salts. These new compounds (ligands and complexes) were characterized with FT–IR, magnetic susceptibility measurement, molar conductivity measurements, mass spectrometry measurements, thermal methods (e.g. thermal gravimetric analysis), 1H NMR (Nuclear Magnetic Resonance) and 13C NMR spectral data and elemental analyses.  相似文献   

3.
Newly synthesized mononuclear copper(II) and zinc(II) complexes containing an azo Schiff base ligand (L), prepared by condensation of 2-hydroxy-5-(o-tolyldiazenyl)benzaldehyde and propylamine, were obtained and then characterized using infrared and NMR spectroscopies, mass spectrometry and X-ray diffraction. Ligand L behaves as a bidentate chelate by coordinating through deprotonated phenolic oxygen and azomethine nitrogen. The copper and zinc complexes crystallize in triclinic and orthorhombic systems, respectively, with space groups P1 and Pca21. In these complexes, the Cu(II) ion is in a square planar geometry while the Zn(II) ion is in a distorted tetrahedral environment. The photochemical behaviors of ligand L, [Cu(L)2] and [Zn(L)2] were investigated. The azo group in L underwent reversible transcis isomerization under UV and visible irradiation. This process was inhibited for the complexes. In addition, ligand L and its copper and zinc complexes were assessed for their in vitro antibacterial activities against four pathogenic strains.  相似文献   

4.
A five-coordinate zinc complex with tris(2-(N-methyl)benzimidazylmethyl)amine (Mentb) and salicylate, with composition [Zn(Mentb)(salicylate)](NO3), was synthesized and characterized by elemental analysis, IR and UV-Vis spectral measurements. The crystal structure of the zinc complex shows that Zn(II) is bonded to tris(2-(N-methyl)benzimidazylmethyl)amine (Mentb) and a salicylate through four nitrogens and one oxygen, and the coordination geometry is best described as distorted trigonal-bipyramid. The DNA-binding of the Zn(II) complex and Mentb were investigated by spectrophotometric methods and viscosity measurements, and the results suggest that the Zn(II) complex binds to DNA via intercalation; the binding affinity of the Zn(II) complex to DNA is greater than Mentb. Additionally, Zn(II) complex exhibited potential to scavenge hydroxyl radical in vitro.  相似文献   

5.
Nine copper(II) complexes of o-hydroxy Schiff bases derived from benzylamine, p-methoxybenzylamine, p-nitrobenzylamine, salicylaldehyde, 2-hydroxy-1-naphthalenecarboxaldehyde, and 3-hydroxy-2-naphthalenecarboxaldehyde were synthesized and characterized by chemical analysis, mass spectrometry, UV-Vis, infrared and electron paramagnetic resonance (EPR) spectroscopy, and seven X-ray crystal structures. The X-ray diffraction studies of these compounds showed that the geometry around the copper is square planar in six of the seven complexes. EPR studies of all the complexes in DMF solution at 77 K suggest that their geometries in solution are square planar as well.  相似文献   

6.
Condensation of diacetylmonoxime with 2-amino-5-mercapto-1,3,4-thiadiazole, 2-amino-1,3,4-thiadiazole or 3-amino-5-methylisoxazole in the presence of Co(II) and Cu(II) salts with different anions produced nine complexes. The synthesized complexes have been characterized by elemental analyses, molar conductivities, thermal analyses, magnetic moments, IR, electron spin resonance, and UV-Vis spectral studies. The spectral data show that sulfur, oxygen, and nitrogen participate in chelation with the metal ions. The complexes are tetrahedral, octahedral, or square planar based on the amine used and the nature of anion. Molar conductance measurements of the complexes in DMF indicate non-electrolytes. CS Chem 3-D Ultra Molecular Modeling and Analysis Program has been used for optimization of the molecular structures of some complexes. In vitro cytotoxicities of the complexes were tested against different carcinoma cell lines. Antimicrobial activities of the complexes were screened against Gram-positive (Staphylococcus aureus), Gram negative bacteria (Escherichia coli), and fungal species (Aspergillus flavus, Candida albicans, and Microsporum canis).  相似文献   

7.
Sn(II)-complexes of seven 2-amino-5-substituted-aryl-1,3,4-oxadiazole Schiff bases have been synthesized and characterized by various physico-chemical studies. Their structures have been confirmed by elemental analyses, infrared, 1H NMR, UV-Vis, and mass spectral studies as well as thermal decomposition. Conductance measurements in methanol show these complexes to be non-electrolytes, and the molecular weight determinations support the proposed molecular formulae. The molecular structures of the complexes have been optimized by CS Chem 3-D Ultra Molecular Modeling and Analysis Program showing tetrahedral geometry. The bio-efficacy of the complexes has been examined against the growth of bacteria (Escherichia coli and Staphylococcus aureus) and fungi (Aspergillus flavus and Candida albicans) in vitro to evaluate their anti-microbial potential.  相似文献   

8.
A new series of six chromone‐derived compounds and their Cu(II) complexes was synthesized and characterized by their physical, spectral and analytical data The elemental analysis data of the complexes agree well with the proposed composition of the compounds, which were found to be dimeric in nature with two hydrazine molecules bridging the two copper atoms through coordination. The ligands and their Cu(II) complexes were screened for their in‐vitro antibacterial activity against four Gram‐negative (Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, Shigella flexneri) and two Gram‐positive (Bacillus subtilis, Staphylococcus aureus) bacterial strains by the agar‐well diffusion method. The ligands were found to exhibit either no or low to moderate activities against one or more of the bacterial species, whereas all the metal complexes exhibited moderate to high activities against different bacterial species. The ligands which were inactive before complexation turned active and less active ones became more active upon coordination with copper ions. Overall, the complexes 7–12 showed comparatively much higher activities than the ligands. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
The synthesis and characterization of two new acetato-bridged dinuclear copper(II) complexes are described. Both compounds have the general formula [Cu(L)(µ-O2C–CH3)]2, in which L = 4-bromo-2-((4-methylpyridin-2-ylimino)methyl)phenol or 4-bromo-2-((6-methylpyridin-2-ylimino)methyl)phenol. The title compounds consist of dinuclear units with bridging acetato groups and a ligand linked to each copper via the phenol oxygen and nitrogen. Both compounds were synthesized in a one-step reaction and characterized by elemental analysis, Fourier transform infrared (FTIR), electron spin resonance (ESR), and electronic spectra and by room temperature magnetic moments. The compounds exhibit antiferromagnetic interactions at room temperature. UV-Vis spectra show four absorptions attributed to d–d transitions of copper, ligand → metal charge transfer and π π* or n π* transitions of ligand. The FTIR spectra indicate a Cu2O4C2 ring vibration. Both complexes show room temperature magnetic moments of about 1.6 B.M. per copper. The X-band ESR studies indicate a weak half-field band, characteristic of the Cu(II)–Cu(II) dimer, observed at 1552 and 1558 G for the complexes, strongly suggesting that the hyperfine structure arises from a spin triplet species. The spectra of frozen samples in DMSO or DMF at liquid nitrogen temperature show a typical Δm = 1 transition.  相似文献   

10.
A template Schiff condensation of 2,6-pyridine dicarbaldehyde or 2,6-diformyl-4- bromophenol and 1,3–diamino-2-hydroxy propane or 3,4-diaminotoluene in the presence of copper(II) salts (CuX2) (X = Cl, Br, CH3COO, or ClO4) affords different types of copper(II) complexes. Depending on the employed molar ratio of the dicarbonyl compounds and diamines, different types of copper(II) complexes formed during the template condensation reaction. Structural formulation of the complexes was confirmed by elemental analysis (C, H, N, and M), physical measurements such as thermal analysis (TAG & DTG), molar conductivity, and magnetic moments in addition to spectral studies (UV–Vis, IR, and ESR). Homobinuclear in a four-coordinate square planar and five-coordinate square pyramidal and trigonal bipyramidal in monomeric structures are proposed. A mononuclear hexa-coordinate in an octahedral geometry is suggested as well. Oxidase biomimetic catalytic activity of these newly synthesized copper(II) complexes was examined toward the aerobic oxidation of 4-tert-butylcatechol (4-TBCH2) and o-aminophenol under catalytic conditions. Both catalytic and kinetic investigations demonstrate promising oxidase catalytic activity and based on the kinetic results, probable mechanistic catalytic implications are discussed. Geometrical structures of representative copper(II) complexes were determined by optimizing their bond lengths, bond angles, dihedral angles, and the structural index (τ).  相似文献   

11.
A new series of binuclear unsymmetrical compartmental oxime complexes (15) [M2L] [M=Cu(II), Ni(II)] have been synthesized using mononuclear complex [ML] (L=1,4-bis[2-hydroxy-3-(formyl)-5-methylbenzyl]piperazine), hydroxylamine hydrochloride and triethylamine. In this system there are two different compartments, one has piperazinyl nitrogens and phenolic oxygens and the other compartment has two oxime nitrogens and phenolic oxygens as coordinating sites. The complexes were characterized by elemental and spectral analysis. Electrochemical studies of the complexes show two step single electron quasi-reversible redox processes at cathodic potential region. For copper complexes E1 pc=−0.18 to −0.62 and E2 pc=−1.18 to −1.25 V, for nickel complexes E1 pc=−0.40 to −0.63 and E2 pc=−1.08 to −1.10 V and reduction potentials are sensitive towards the chemical environment around the copper and nickel atoms. The nickel(II) complexes undergo two electrons oxidation. The first one electron oxidation is observed around +0.75 V and the second around +1.13 V. ESR Spectra of the binuclear copper(II) complexes [Cu2L](ClO4), [Cu2L(Cl)], [Cu2L(NO3)] shows a broad signal at g=2.1 indicating the presence of coupling between the two copper centers. Copper(II) complexes show a magnetic moment value of μeff around 1.59 B.M at 298 K and variable temperature magnetic measurements show a −2J value of 172 cm−1 indicating presence of antiferromagnetic exchange interaction between copper(II) centres.  相似文献   

12.
Schiff-base complexes of cobalt(II), nickel(II), copper(II) and, zinc(II) with 3-ethoxysalicyliden-p-aminoacetophenoneoxime (HL) were prepared and characterized on the basis of elemental analyses, IR, 1H- and 13C-NMR, electronic spectra, magnetic susceptibility measurements, molar conductivity and thermogravimetric analyses (TGA). A tetrahedral geometry has been assigned to the complexes.  相似文献   

13.
Hqpzc has been synthesized by a highly efficient procedure using the ionic liquid TBAB as an environmentally benign reaction medium. [Cu(qpzc)(OAc)]·H2O (1) and [Zn(qpzc)(OAc)(H2O)] (2), complexes of the deprotonated ligand, qpzc¯ [qpzc¯ = N-(quinolin-8-yl)pyrazine-2-carboxamide], have been synthesized and characterized by elemental analyses, spectroscopic methods, and X-ray crystallography. The coordination geometry around the metal ions in both complexes is distorted square pyramidal. The mono-anionic qpzc¯ is a tridentate unsymmetrical ligand furnishing an N3 set, occupying three of the four basal positions. Acetate is a bidentate ligand in 1 and unidentate in 2. The apical position in 2 is occupied by water. Quite strong O-H…O hydrogen bonds create columns of complexes [rod group p21(11)] in the copper complex, but in conjunction with π-π interactions, a 3D edifice in the zinc complex. The electrochemical behavior of the ligand and its copper and zinc complexes shows that the quinoline ring reduces at more positive potentials in these complexes relative to the free ligand. The in vitro antibacterial activities of these complexes were tested against Escherichia Coli and Staphylococcus Aureus.  相似文献   

14.
Sulfonamide‐derived new ligands, 4‐({[(E)‐(5‐bromo‐2‐hydroxyphenyl)methylidene]‐amino}methyl)benzenesulfonamide and 4‐bromo‐2‐((E)‐{4‐[(3,4‐dimethylisoxazol‐5‐yl)sulfamoyl]phenyl}iminiomethyl)phenolate and their transition metal [cobalt(II), copper(II), nickel(II) and zinc(II)] complexes were synthesized and characterized. The nature of bonding and structure of all the synthesized compounds were deduced from physical (magnetic susceptibility and conductivity measurements), spectral (IR, 1H and 13C NMR, electronic, mass spectrometry) and analytical (CHN analysis) data. The structure of the ligand, 4‐bromo‐2‐((E)‐{4‐[(3,4‐dimethylisoxazol‐5‐yl)sulfamoyl]phenyl} iminiomethyl)phenolate was also determined by X‐ray diffraction method. An octahedral geometry was suggested for all the complexes. In order to evaluate the biological activity of the ligands and the effect of metals, the ligands and their metal complexes were screened for in vitro antibacterial, antifungal and cytotoxic activity. The results of these studies revealed that all compounds showed moderate to significant antibacterial activity against one or more bacterial strains and good antifungal activity against various fungal strains. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Six new derivatives of ciprofloxacin compounds and their copper(II) complexes were synthesized, characterized by spectroscopic methods (ultraviolet–visible [UV–vis], Fourier transform infrared [FTIR], nuclear magnetic resonance [NMR], mass spectrometry [MS], and electron paramagnetic resonance [EPR]), and tested for antibacterial activities against gram-negative and gram-positive bacteria. The data showed that ciprofloxacin derivatives act as bidentate ligands and the metal ions coordinate through the pyridone carbonyl and the carboxylate oxygen atoms. Tetragonally distorted octahedral ligand fields were assumed for all complexes based on their spectral studies. Copper(II) complexes of the synthesized ciprofloxacin derivatives revealed higher antibacterial activities against gram-positive and gram-negative bacterial species than the parent ciprofloxacin antibiotic. Furthermore, three-dimensional quantitative structure–activity relationship (3D-QSAR) models were evaluated by studying 30 antibiotic compounds of the quinolone class. Density function theory (DFT) calculations were applied to evaluate the optimized geometrical structures using the B3LYP method and 6-311G(d,p) basis set. The 3D-QSAR study revealed that there are eight optimum parameters that give the best predictive modulation with good reliability (R2 = 0.996, F = 12.004, sigma = 0.426). In silico molecular docking was also performed on the derivatives, and the results revealed the presence of two types of interactions between the Escherichia coli and the derivatives, H-bonding and Van der Waals interactions, and an effective inhibition at the docked site.  相似文献   

16.
The macrocyclic complexes of Co(II) and Ni(II) having chloride or thiocyanate ions in the axial position have been synthesized and characterized. These complexes are synthesised by the template condensation of o-phenylenediamine or 2,3-butanedionedihydrazone with the appropriate aldehydes in NH4OH solution in the presence of the metal ions, Co(II) and Ni(II). The complexes were characterized by spectroscopic methods (IR, UV-Vis and ESR) and magnetic measurements as well as thermal analysis (TG and DTA). The results obtained are commensurate with the proposed formulae. Spectral studies indicate that these complexes have an octahedral structure. From conductivity measurements the complexes are non-electrolytes. The kinetic of the thermal decomposition of the complexes was studied and the thermodynamic parameters are reported.  相似文献   

17.
A bioactive Schiff base HL i.e. 2‐hydroxy‐benzoic acid(3,4‐dihydro‐2H ‐naphthalen‐1‐ylidene)‐hydrazide was synthesized by reacting equimolar amount of salicylic acid hydrazide and 1‐tetralone. Co(II), Ni(II) and Zn(II) complexes of ligand HL was synthesized in 1:1 and 1:2 molar ratio of metal to ligand. The structure of the synthesized ligand and metal complexes was established by elemental analysis, molar conductance, magnetic susceptibility measurements, electronic, IR and EPR spectral techniques. For determining the thermal stability the TGA has been done. In DFT studies the geometries of Schiff bases and metal complexes were fully optimized with respect to the energy using the 6–31 + g(d,p) basis set. Spectral data reveal that ligand behave uninegative tridentate in ML complexes and uninegative bidentate in ML2 complexes. On the basis of characterization octahedral geometry has been assigned for Co(II) and Ni(II) complexes, while tetrahedral for Zn(II) complexes. Antibacterial activity of the synthesized compounds were evaluated against Staphylococcus aureus , Bacillus subtilis, Escherichia coli , Xanthomonas campestris and Pseudomonas aeruginosa and the results revealed that metal complexes show enhanced activity in comparison to free ligand.  相似文献   

18.
The new cyclodiphosph(V)azane derivatives (1,3-dimethyl-2,4-dioxo-2',4'-bis(2,4-bis(dimethylaminopropylimino)cyclodiphosph(V)azane (H2L1) (1,3-dimethyl-2,4-dioxo-2',4'-bis(2,4-bis(dimethylaminoethylimino)cyclodiphosph(V)azane (H2L2) and (1,3-dimethyl-2,4-dioxo-2'-(dimethylaminoethylimino)-4'-(dimethylaminopropyl-imino)cyclodiphosph(V)azane (H2L3) containing four active coordination centers (NNNN) and their Cu(II) complexes have been synthesized and characterized by elemental analyses, spectroscopic methods, molar conductance as well as thermal and magnetic measurements. The UV–Vis and mass spectra of the ligands and their Cu(II) complexes were also recorded. The copper(II) complexes were found to have magnetic moments of 1.58–1.69 B. M. corresponding to one unpaired electron. The possible geometries of the complexes were assigned on the basis of EPR, electronic, and infrared spectral studies. The absence of water molecules in all complexes was supported by thermal studies. All the thermal decomposition processes ended with the formation of CuO. The kinetic and thermodynamic parameters have been calculated. The ligand (H2L3) and its Cu(II) complexes were screened for their anticancer studies against human breast cancer cell lines MCF-7 and minimum inhibitory concentration was calculated. The screening was extended to the antibacterial activity using Kirby–Bauer single disk susceptibility test for all compounds.  相似文献   

19.
A new ligand N′-(pyridin-2-ylmethylene)nicotinohydrazide (HL2) and two Ni(II) complexes of stoichiometry NiL1·H2O [L1-2-benzoylpyridine nicotinoylhydrazone] and NiL2·H2O have been synthesized and characterized by elemental analyses, IR and UV–Vis spectral studies. Structures of HL2 and Ni(II) compounds have been determined by single crystal X-ray diffraction studies which reveal a distorted octahedral geometry around the two Ni(II) centers.
Graphical abstract A new ligand N¢-(pyridin-2-ylmethylene)nicotinohydrazide (HL2) and two Ni(II) complexes of stoichiometry NiL1·H2O [L1-2-benzoylpyridine nicotinoylhydrazone] and NiL2·H2O have been synthesized and characterized by elemental analyses, IR, UV–Vis spectral studies and single crystal X-ray analysis.
  相似文献   

20.
Abstract

A one pot procedure was used to synthesize two new derivatives of α-aminophosphonates. Novel copper(II) complexes of α-aminophosphonates were synthesized by coordinating different copper salts with the newly synthesized α-aminophosphonates. Their structures were characterized by different spectral and analytical techniques. Evaluation of the metal-free ligands HL1, HL2, and their Cu(II) complexes against human colon carcinoma HT-29 cell lines was performed, using cisplatin as a reference drug. The results indicated that the complexes of the ligand HL1 exhibited enhanced anticancer activity, while ligand HL2 complexes showed decreased anticancer activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号