首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9680篇
  免费   1713篇
  国内免费   1287篇
化学   6077篇
晶体学   212篇
力学   523篇
综合类   83篇
数学   501篇
物理学   5284篇
  2024年   14篇
  2023年   87篇
  2022年   178篇
  2021年   241篇
  2020年   319篇
  2019年   312篇
  2018年   311篇
  2017年   316篇
  2016年   423篇
  2015年   374篇
  2014年   415篇
  2013年   1234篇
  2012年   570篇
  2011年   651篇
  2010年   507篇
  2009年   642篇
  2008年   615篇
  2007年   572篇
  2006年   593篇
  2005年   544篇
  2004年   487篇
  2003年   455篇
  2002年   365篇
  2001年   266篇
  2000年   301篇
  1999年   230篇
  1998年   168篇
  1997年   154篇
  1996年   163篇
  1995年   140篇
  1994年   165篇
  1993年   130篇
  1992年   112篇
  1991年   100篇
  1990年   74篇
  1989年   67篇
  1988年   54篇
  1987年   36篇
  1986年   48篇
  1985年   43篇
  1984年   47篇
  1983年   10篇
  1982年   24篇
  1981年   22篇
  1980年   14篇
  1979年   14篇
  1978年   9篇
  1977年   9篇
  1976年   7篇
  1973年   24篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
41.
42.
We use molecular simulation to probe the connection between local structure and the unusual re-entrant dynamics observed for polydisperse hard-sphere liquids confined in thin slit pores. The local structure is characterised by calculating 2-D bond-orientational order parameters associated with square and hexatic order for particles in the layer adjacent to the confining walls. When the wall separation is commensurate with the average particle size, the particles primarily exhibit local hexatic order, whereas local square order increases in prevalence for incommensurate geometries. The relaxation time extracted from the ensemble-averaged mean-square displacement increases exponentially with the static correlation length associated with hexatic local order in strongly confined commensurate geometries, in agreement with theoretical predictions for dynamical slowing. Square order, by contrast, is not associated with a growing length scale for either commensurate or incommensurate geometries, indicating that it is strongly geometrically frustrated. Our results suggest that the influence of bond-orientational order on dynamical slowing may be altered by changing the extent of confinement.  相似文献   
43.
We study the nature of the smectic–isotropic phase transition using a mobile 6-state Potts model. Each Potts state represents a molecular orientation. We show that with the choice of an appropriate microscopic Hamiltonian describing the interaction between individual molecules modeled by a mobile 6-state Potts spins, we observe the smectic phase dynamically formed when we cool the molecules from the isotropic phase to low temperatures (T). In order to elucidate the order of the transition and the low-T properties, we use the high-performance Wang–Landau flat energy-histogram technique. We show that the smectic phase goes to the liquid (isotropic) phase by melting/evaporating layer by layer starting from the film surface with increasing T. At a higher T, the whole remaining layers become orientationally disordered. The melting of each layer is characterized by a peak of the specific heat. Such a succession of partial transitions cannot be seen by the Metropolis algorithm. The successive layer meltings/evaporations at low T are found to have a first-order character by examining the energy histogram. These results are in agreement with experiments performed on some smectic liquid crystals.  相似文献   
44.
The task of reconstructing the system’s state from the measurements results, known as the Pauli problem, usually requires repetition of two successive steps. Preparation in an initial state to be determined is followed by an accurate measurement of one of the several chosen operators in order to provide the necessary “Pauli data”. We consider a similar yet more general problem of recovering Feynman’s transition (path) amplitudes from the results of at least three consecutive measurements. The three-step histories of a pre- and post-selected quantum system are subjected to a type of interference not available to their two-step counterparts. We show that this interference can be exploited, and if the intermediate measurement is “fuzzy”, the path amplitudes can be successfully recovered. The simplest case of a two-level system is analysed in detail. The “weak measurement” limit and the usefulness of the path amplitudes are also discussed.  相似文献   
45.
ABSTRACT

This study computes the potential energy curves of the X1Σ+, A1Π, B1Δ, C1Σ+, and D1Π states of AlO+ cation and the transition dipole moments between them. The orders of the rotationless radiative lifetimes are 10–100?μs for the A1Π state, 1–1000?ms for the B1Δ state, 10?ns for the first well and 100?ns for the second well of the C1Σ+ state, and 1?μs for the D1Π state. Emissions of the B1Δ–A1Π and D1Π–C1Σ+ systems are so weak that they are hardly measured via spectroscopy, the emissions of the C1Σ+–X1Σ+, C1Σ+–A1Π, and D1Π–X1Σ+ systems are so strong that they can be detected readily, and emissions of the A1Π–X1Σ+ and D1Π–A1Π systems can be observed through spectroscopy only by a significant effort. There is a strong great similarity between spontaneous emissions of the A1Π–X1Σ+ system of the AlO+ cation and the A2Π–X2Σ+ system of the AlO radical. The emissions of the A2Π–X2Σ+ system of the AlO radical have been measured in outer space Therefore, it is highly possible that the emissions of the A1Π–X1Σ+ system of the AlO+ cation can be detected in the astrophysical media.  相似文献   
46.
A known trinuclear structure was used to design the heterobimetallic mixed-valent, mixed-ligand molecule [CoII(hfac)3−Na−CoIII(acac)3] ( 1 ). This was used as a template structure to develop heterotrimetallic molecules [CoII(hfac)3−Na−FeIII(acac)3] ( 2 ) and [NiII(hfac)3−Na−CoIII(acac)3] ( 3 ) via isovalent site-specific substitution at either of the cobalt positions. Diffraction methods, synchrotron resonant diffraction, and multiple-wavelength anomalous diffraction were applied beyond simple structural investigation to provide an unambiguous assignment of the positions and oxidation states for the periodic table neighbors in the heterometallic assemblies. Molecules of 2 and 3 are true heterotrimetallic rather than a statistical mixture of two heterobimetallic counterparts. Trinuclear platform 1 exhibits flexibility in accommodating a variety of di- and trivalent metals, which can be further utilized in the design of molecular precursors for the NaMM′O4 functional oxide materials.  相似文献   
47.
Triene 6π electrocyclization, wherein a conjugated triene undergoes a concerted stereospecific cycloisomerization to a cyclohexadiene, is a reaction of great historical and practical significance. In order to circumvent limitations imposed by the normally harsh reaction conditions, chemists have long sought to develop catalytic variants based upon the activating power of metal–alkene coordination. Herein, we demonstrate the first successful implementation of such a strategy by utilizing [(C5H5)Ru(NCMe)3]PF6 as a precatalyst for the disrotatory 6π electrocyclization of highly substituted trienes that are resistant to thermal cyclization. Mechanistic and computational studies implicate hexahapto transition-metal coordination as responsible for lowering the energetic barrier to ring closure. This work establishes a foundation for the development of new catalysts for stereoselective electrocyclizations.  相似文献   
48.
The electronic (energy gap and work function) as well as electrical properties (dipole moment, polarizability, and first hyperpolarizabilities) of the first-row transition metals decorated C24N24 cavernous nitride fullerene were explored using DFT calculations. The transition metals are decorated at N4 cavity of C24N24 fullerene. According to our spin polarized computations, the most stable spin state monotonically increases to sextet for Mn@C24N24 and thereafter dropped off gradually to singlet state for Zn@C24N24 system. The findings demonstrate that transition metals can remarkably decrease the HOMO-LUMO energy gap and work function values up to 63% and 21% of bare C24N24, respectively. As can be seen, when the Sc and Ti metals are located above the N4 cavity of fullerene, systems of enhanced static hyperpolarizabilities (β0) are delivered. These findings might provide an effective strategy to design high performance eletcro-optical materials based on carbon- nitride fullerene.  相似文献   
49.
A structurally stable, 3d-4f heterometallic coordination polymer has been solvothermally synthesised and evaluated for its accomplished materials properties. The light absorption activity in the visible band was higher for unique Ce-Fe MOF than that of the homometallic Ce-MOF or Fe- MOF. The intimate overlap of two different metal clusters in heterometallic environmental induced the formation of low line conduction orbital, which ultimately lowered the transition energy. The heterometallic acquired an additional sensitisation from a Fe-μ3-oxo cluster that had vibrantly enhanced the light uptake activity. The vacancy created in the 6s, 5d orbital of Ce in Ce-Fe MOF contributed to the photo-excitation of electrons and reduced the recombination time. This distinct intramolecular arrangement assisted the exciton trapping characteristic. Also, the presence of multiple metal cores in the framework aided to confine the increased number of excitons for a redox reaction. The solar photocatalysis study with acetaminophen revealed these improved materialistic features by degrading it 94.6% with a rate constant of 0.0137 min−1. The recycle studies confirmed the robust stability of the synthesised MOF.  相似文献   
50.
Using high-resolution transmission electron microscopy and electron energy-loss spectroscopy, we show that beryllium oxide crystallizes in the planar hexagonal structure in a graphene liquid cell by a wet-chemistry approach. These liquid cells can feature van-der-Waals pressures up to 1 GPa, producing a miniaturized high-pressure container for the crystallization in solution. The thickness of as-received crystals is beyond the thermodynamic ultra-thin limit above which the wurtzite phase is energetically more favorable according to the theoretical prediction. The crystallization of the planar phase is ascribed to the near-free-standing condition afforded by the graphene surface. Our calculations show that the energy barrier of the phase transition is responsible for the observed thickness beyond the previously predicted limit. These findings open a new door for exploring aqueous-solution approaches of more metal-oxide semiconductors with exotic phase structures and properties in graphene-encapsulated confined cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号