首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73483篇
  免费   6145篇
  国内免费   12032篇
化学   57539篇
晶体学   2070篇
力学   1012篇
综合类   492篇
数学   14103篇
物理学   16444篇
  2024年   69篇
  2023年   1262篇
  2022年   1068篇
  2021年   1977篇
  2020年   2386篇
  2019年   2298篇
  2018年   1917篇
  2017年   2244篇
  2016年   2369篇
  2015年   2197篇
  2014年   3101篇
  2013年   6544篇
  2012年   4280篇
  2011年   5116篇
  2010年   4277篇
  2009年   5148篇
  2008年   5265篇
  2007年   5215篇
  2006年   4699篇
  2005年   4048篇
  2004年   3830篇
  2003年   3203篇
  2002年   2655篇
  2001年   2045篇
  2000年   1821篇
  1999年   1613篇
  1998年   1330篇
  1997年   1139篇
  1996年   1123篇
  1995年   1139篇
  1994年   1054篇
  1993年   818篇
  1992年   750篇
  1991年   577篇
  1990年   413篇
  1989年   396篇
  1988年   320篇
  1987年   253篇
  1986年   207篇
  1985年   249篇
  1984年   207篇
  1983年   101篇
  1982年   173篇
  1981年   195篇
  1980年   117篇
  1979年   106篇
  1978年   76篇
  1977年   89篇
  1976年   63篇
  1973年   39篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
Oxidative dehydrogenation (ODH) of n-octane was carried out over a vanadium–magnesium oxide catalyst in a continuous flow fixed bed reactor. The catalyst was characterized by ICP–OES, powder XRD and SEM. The catalytic tests were carried out at different gas hourly space velocities (GHSVs), viz. 4000, 6000, 8000, and 10,000 h?1. The best selectivity for octenes was obtained at the GHSV of 8000 h?1, while that for C8 aromatics was attained at the GHSV of 6000 h?1 at high temperatures (500 and 550 °C). The catalytic testing at the GHSV of 10,000 h?1 showed the lowest activity, while that at the GHSV of 4000 h?1 consistently showed the lowest ODH selectivity. Generally, the best ODH performance was obtained by the catalytic testing at the GHSVs of 6000 and 8000 h?1. No phasic changes were observed after the catalytic testing.  相似文献   
42.
徐艳  陈艳  宫贵贞  董黎明  王鹏  李靖  宋明 《化学教育》2019,40(20):70-74
以甲烷-二氧化碳重整制合成气为实例,设计探究性实验,将合成气的制备和现代分析技术应用于化工专业实验的教学实践中以提高学生的创新和实践能力。实验包括催化剂的制备,催化剂的性能评价和催化剂的表征等3大部分。采用工业最常用的浸渍法制备含有不同助剂的Ni/X/γ-Al2O3(X为Co,Fe,MgO,CeO2)催化剂,以甲烷-二氧化碳重整反应评价其催化性能,并采用XRD、H2-TPR、BET和TG对催化剂的微观结构进行表征。结合催化剂的性能评价结果和表征结果,探讨不同助剂对镍基催化剂性能的改善效果及机制。通过开设该实验,可以让学生了解化工学科的前沿知识以及现代分析技术的基本原理和用途,掌握专业的实验操作、数据处理和谱图绘制方法,提高学生的专业素养和综合能力。  相似文献   
43.
This study reports the structural and spectroscopic characterization of a novel metal organic compound formulated as [Fe (bpy)3] [Fe (dipic)2]2.7H2O ( 1 ) (dipic = pyridine‐2,6‐dicarboxylate and bpy = 2,2‐bipyridine). 1 was investigated by elemental analysis, FT‐IR spectroscopy, powder X‐ray diffraction and single crystal X‐ray diffraction (SC‐XRD), which revealed a triclinic structure of expected composition. Thermal degradation of 1 was also investigated. Complex 1 was used as a precursor to prepare superparamagnetic nanoparticles of Fe3O4 by thermal analysis. The obtained Fe3O4 was characterized by Fourier transformed infrared spectroscopy (FT‐IR), powder X‐ray diffraction (XRD) and scanning electron microscopy (SEM). Fe3O4 nanoparticles were used as a nano‐adsorbent to remove Cd2+ from water at room temperature. The results showed that this nano‐adsorbent is effective in removing Cd2+ from contaminated water sources, and that the maximal effectivity of adsorption occurs at pH = 6. Magnetic measurements of complex 1 and Fe3O4 nanoparticles at room temperature revealed paramagnetic and superparamagnetic behavior, respectively.  相似文献   
44.
This work presents sufficient conditions for the existence of homoclinic solutions for second order coupled discontinuous systems of differential equations on the real line without the usual growth condition in the literature.The arguments apply the fixed point theory, Green's functions technique, L1-Carathéodory functions, lower and upper solutions and Schauder's fixed point theorem.  相似文献   
45.
To optimize the cycle life and rate performance of lithium-ion batteries (LIBs), ultra-fine Fe2O3 nanowires with a diameter of approximately 2 nm uniformly anchored on a cross-linked graphene ribbon network are fabricated. The unique three-dimensional structure can effectively improve the electrical conductivity and facilitate ion diffusion, especially cross-plane diffusion. Moreover, Fe2O3 nanowires on graphene ribbons (Fe2O3/GR) are easily accessible for lithium ions compared with the traditional graphene sheets (Fe2O3/GS). In addition, the well-developed elastic network can not only undergo the drastic volume expansion during repetitive cycling, but also protect the bulk electrode from further pulverization. As a result, the Fe2O3/GR hybrid exhibits high rate and long cycle life Li storage performance (632 mAh g−1 at 5 A g−1, and 471 mAh g−1 capacity maintained even after 3000 cycles). Especially at high mass loading (≈4 mg cm−2), the Fe2O3/GR can still deliver higher reversible capacity (223 mAh g−1 even at 2 A g−1) compared with the Fe2O3/GS (37 mAh g−1) for LIBs.  相似文献   
46.
Dr. Qing Tang 《Chemphyschem》2019,20(4):595-601
Among the widely studied 2D transition metal dichalcogenides (TMDs), MoTe2 has attracted special interest for phase-change applications due to its small 2H-1T′ energy difference, yet a large scale phase transition without structural disruption remains a significant challenge. Recently, an interesting long-range phase engineering of MoTe2 has been realized experimentally by Ca2N electride. However, the interface formed between them has not been well understood, and moreover, it remains elusive how the presence of Ca2N would affect the basal plane reactivity of MoTe2. To address this, we performed density functional theory (DFT) calculations to investigate the potential of tuning the phase stability and chemical reactivity of a MoTe2 monolayer via interacting with Ca2N to form a van der Walls heterostructure. We found that the contact nature at the 2H-MoTe2/Ca2N interface is Schottky-barrier-free, allowing for the spontaneous electron transfer from Ca2N to 2H-MoTe2 to make it strongly n-type doped. Moreover, Ca2N doping significantly lowers the energy of 1T′-MoTe2 and dynamically triggers the 2H-to-1T′ transformation. The Ca2N-induced phase modulation can also be applied to tune the phase energetics of MoS2 and MoSe2. Furthermore, using H adsorption as the testing ground, we also find that the H binding on the basal plane of MoTe2 is enhanced after forming heterostructure with Ca2N, potentially providing basis for surface modification and other related catalytic applications.  相似文献   
47.
In this study, we present a versatile and easy procedure for modifying a cobalt ferrite nanoparticle step by step. A new nanocatalyst was prepared via CuII immobilized onto CoFe2O4@HT@Imine. The catalyst was fully characterized by Fourier‐transform infrared (FT‐IR), energy‐dispersive X‐ray spectroscopy (EDX), field emission scanning electron microscopy (FE‐SEM), X‐ray diffraction (XRD), and vibrating sample magnetometer (VSM) analyses. The current procedure as a green protocol offers benefits including a simple operational method, an excellent yield of products, mild reaction conditions, minimum chemical wastes, and short reaction times. Without any significant reduction in the catalytic performance, up to five recyclability cycles of the catalyst were obtained. The optimization results suggest that the best condition in the oxidation of benzyl alcohol derivatives is 0.003 g of the CoFe2O4@HT@Imine‐CuII catalyst, TEMPO, at 70°C under solvent‐free condition and air.  相似文献   
48.
The large-scale production of ammonia mainly depends on the Haber–Bosch process, which will lead to the problems of high energy consumption and carbon dioxide emission. Electrochemical nitrogen fixation is considered to be an environmental friendly and sustainable process, but its efficiency largely depends on the activity and stability of the catalyst. Therefore, it is imperative to develop highefficient electrocatalysts in the field of nitrogen reduction reaction (NRR). In this paper, we developed a BiVO4/TiO2 nanotube (BiVO4/TNT) heterojunction composite with rich oxygen vacancies as an electrocatalytic NRR catalyst. The heterojunction interface and oxygen vacancy of BiVO4/TNT can be the active site of N2 dynamic activation and proton transition. The synergistic effect of TiO2 and BiVO4 shortens the proton transport path and reduces the over potential of chemical reaction. BiVO4/TNT has high ammonia yield of 8.54 μg·h−1·cm−2 and high Faraday efficiency of 7.70% in −0.8 V vs. RHE in 0.1 M Na2SO4 solution.  相似文献   
49.
In the present work, an innovative leach proof nanocatalyst based on dendritic fibrous nanosilica (DFNS) modified with ionic liquid loaded Fe3O4 NPs and CuI salts was designed and applied for the rapid synthesis of imidazo[1,2‐a]pyridines from the reaction of phenyl acetylene, 2‐aminopyridine, and aldehydes in aqueous medium. The structure of the synthesized nanocatalyst was studied by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Fourier transform infrared (FT‐IR), flame atomic absorption spectroscopy (FAAS), energy‐dispersive X‐ray (EDX), and X‐ray diffraction (XRD), vapor–liquid–solid (VLS), and adsorption/desorption analysis (Brunauer–Emmett–Teller [BET] equation) instrumental techniques. CuI/Fe3O4NPs@IL‐KCC‐1 with high surface area (225 m2 g?1) and porous structure not only exhibited excellent catalytic activity in aqueous media but also, with its good stability, simply recovered by an external magnet and recycled for eight cycles without significant loss in its intrinsic activity. Higher catalytic activity of CuI/Fe3O4NPs@IL‐KCC‐1 is due to exceptional dendritic fibrous structure of KCC‐1 and the ionic liquid groups that perform as strong anchors to the loaded magnetic nanoparticles (MNPs) and avoid leaching them from the pore of the nanocatalyst. Green reaction media, shorter reaction times, higher yields (71–97%), easy workup, and no need to use the chromatographic column are the advantages of the reported synthetic method.  相似文献   
50.
This study investigated the effects of different treatment of alkaline pH-shifting on milk protein concentrate (MPC), micellar casein concentrate (MCC) and whey protein isolate (WPI) assisted by the same ultrasound conditions, including changes in the physicochemical properties, solubility and foaming capacity. The solubility of milk proteins had a significant increase with gradual enhancement of ultrasound-assisted alkaline pH-shifting (p < 0.05), especially for MCC up to 99.50 %. Also, treatment made a significant decline in the particle size of MPC and MCC, as well as the turbidity of the proteins (p < 0.05). The foaming capacity of MPC, MCC, and WPI was all improved, especially at pH 11, and at this pH, the milk protein also showed the highest surface hydrophobicity. The best foaming capacity at pH 11 was the result of the combined effect of particle size, potential, protein conformation, solubility, and surface hydrophobicity. In conclusion, ultrasound-assisted pH-shifting treatment was found to be effective in improving the physicochemical properties and solubility and foaming capacity of milk proteins, especially MCC, with promising application prospect in food industry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号