首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   735篇
  免费   57篇
  国内免费   83篇
化学   626篇
晶体学   2篇
力学   52篇
综合类   8篇
数学   59篇
物理学   128篇
  2024年   2篇
  2023年   16篇
  2022年   11篇
  2021年   26篇
  2020年   50篇
  2019年   41篇
  2018年   36篇
  2017年   20篇
  2016年   36篇
  2015年   26篇
  2014年   34篇
  2013年   44篇
  2012年   59篇
  2011年   64篇
  2010年   35篇
  2009年   37篇
  2008年   37篇
  2007年   44篇
  2006年   43篇
  2005年   47篇
  2004年   29篇
  2003年   23篇
  2002年   17篇
  2001年   8篇
  2000年   13篇
  1999年   14篇
  1998年   7篇
  1997年   8篇
  1996年   11篇
  1995年   6篇
  1994年   7篇
  1993年   10篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   3篇
排序方式: 共有875条查询结果,搜索用时 968 毫秒
41.
A poly(4‐bromoaniline) (PBA) film is electrochemically synthesized on a gold electrode for the recognition of amino acids enantiomers. Scanning electron microscopy measurements show that the porous PBA films are made up of nano‐ribbons. At the PBA modified Au electrode differential pulse voltammograms of L ‐ and D ‐glutamic acids not only have very different current densities, but also produce different waveforms, providing an intuitive way to differentiate the two chiral molecules. Similar results are obtained in analyzing L ‐ and D ‐aspartic acids. Control experiments suggest that the observed sensing behavior arises from synergistic interactions between Au and the PBA film, where polymerization at the meta‐position creates a steric structure needed for differentiating chiral molecules.  相似文献   
42.
The introduction of sulfur atoms onto target molecules is an important area in organic synthesis, in particular in the synthesis of pharmaceutical compounds, and a wide variety of sulfuration agents have been developed for thionation reactions over the past few decades. In this Focus Review, we collect and summarize the C? S bond‐formation reactions that have been used to construct C? S bonds in natural products and pharmaceutical compounds.  相似文献   
43.
The reactions of laser‐ablated Au, Ag, and Cu atoms with F2 in excess argon and neon gave new absorptions in the M? F stretching region of their IR spectra, which were assigned to metal‐fluoride species. For gold, a Ng? AuF bond was identified in mixed neon/argon samples. However, this bonding was much weaker with AgF and CuF. Molecules MF2 and MF3 (M=Au, Ag, Cu) were identified from the isotopic distribution of the Cu and Ag atoms, comparison of the frequencies for three metal fluorides, and theoretical frequency calculations. The AuF5 molecule was characterized by its strongest stretching mode and theoretical frequency calculations. Additional evidence was observed for the formation of the Au2F6 molecule.  相似文献   
44.
Amarusine A (1), a new polyketide derivative possessing an unusual dioxaspiro[4.4]nonane derivative with a butyrolactone ring, was isolated from the leaves of Pleioblastus amarus. The structure and absolute stereochemistry of compound 1 were rigorously determined using UV, IR, HRESIMS, and 1D and 2D NMR techniques and by comparing experimental and calculated electronic circular dichroism (ECD) spectra. Amarusine A (1) exhibits a good antioxidant activity for scavenging the DPPH radical. A possible biosynthetic pathway was postulated.  相似文献   
45.
Novel fluorine-containing ultraviolet absorbers (FBPs) with low surface energy were successfully synthesized based on 2,4-dihydroxy benzophenone (BP-1), and their structures were characterized by 1H NMR, 13C NMR, FTIR, and HRMS. UV absorption of FBPs was studied in 10−4 M dichloromethane (CH2Cl2), which demonstrated the superior UV absorption capability of FBPs (ca. ?=1.7×104 to 2.2×104 at λmax) over the matrix (?=1.7×104 at λmax). Quantum chemistry calculation was performed to investigate the stable structure and UV electronic absorption bands of FBPs. The surface chemistry information of high-chlorinated polyethylene (HCPE) coating films embedded with ultraviolet absorbers (UVAs) was given by X-ray photoelectron spectroscopy (XPS) and contact angle measurement. The results show that the surface enrichment capability of FBPs is remarkably better than traditional UVAs (including BP-1, BP-3, BP-12) because of the low surface energy properties of FBPs.  相似文献   
46.
Hydrogen produced from water under solar energy is an ideal clean energy source, and the efficiency of hydrogen production usually depends on the catalytic systems based on new compounds and/or a unique nanostructure. Herein, well‐defined cube‐in‐cube hollow Cu9S5 nanostructures have been successfully prepared with Cu2O nanocubes and CS2 as precursors, and single‐shell hollow Cu9S5 nanocubes could be obtained by replacing CS2 with Na2S. The formation mechanism of cube‐in‐cube hollow nanostructures has been proposed based on the Kirkendell effect and an outward self‐assembly process. Further studies revealed that the cube‐in‐cube hollow Cu9S5 nanostructures exhibited better photocatalytic activity toward solar H2 evolution and would be a promising photocatalyst in the solar hydrogen industry.  相似文献   
47.
石墨烯表界面化学修饰及其功能调控   总被引:1,自引:0,他引:1  
石墨烯属于碳纳米材料家族中的一员,是一种单层的二维原子晶体,具有高硬度、高导热性、高载流子迁移率等诸多优良特性,被认为是新一代电子学器件的重要基础材料.近年来我们课题组利用石墨烯的这些优良特性在其表界面化学修饰及其功能调控方面开展了一系列研究工作.我们对石墨烯表界面进行了共价或非共价化学修饰,在一定程度上打开了石墨烯的带隙,并发展了具有传感功能的石墨烯器件.我们还制备了基于石墨烯的纳米电极,发展了新一代分子电子器件的普适性制备方法,实现了单分子器件的功能化.展望未来,以石墨烯为代表的碳基纳米材料将继续在纳电子器件研究领域发挥重要作用.  相似文献   
48.
The traditional design strategies for highly bright solid-state luminescent materials rely on weakening the intermolecular π–π interactions, which may limit diversity when developing new materials. Herein, we propose a strategy of tuning the molecular packing mode by regioisomerization to regulate the solid-state fluorescence. TBP-e-TPA with a molecular rotor in the end position of a planar core adopts a long-range cofacial packing mode, which in the solid state is almost non-emissive. By shifting molecular rotors to the bay position, the resultant TBP-b-TPA possesses a discrete cross packing mode, giving a quantum yield of 15.6±0.2 %. These results demonstrate the relationship between the solid-state fluorescence efficiency and the molecule's packing mode. Thanks to the good photophysical properties, TBP-b-TPA nanoparticles were used for two-photon deep brain imaging. This molecular design philosophy provides a new way of designing highly bright solid-state fluorophores.  相似文献   
49.
Due to their special polar structure, amphiphilic molecules are simple to process, low in cost and excellent in material properties. Thus, they can be widely applied in the preparation of functional film materials and bionics related to cell membranes. Therefore, amphiphilic organic semiconductor materials are receiving increasing attention in research and industrial fields. The structure of organic amphiphilic semiconductor molecules usually consists of three functional parts: a hydrophilic group, a hydrophobic group, and a linking group between them. The adjustment of their correlation to achieve the target performance is particularly important and needs experimental discussion regarding synthetic methodologies. In this work, we focused on the engineering of a substituent alkyl-chain, and an amphiphilic functional molecule (benzo[b]benzo[4, 5] thieno[2, 3-d]thiophene, named CnPA-BTBT, n = 3–11) was proposed and synthesized. This molecule links the hydrophobic semiconductor backbone and hydrophilic polar group through alkyl chains of different lengths. Fundamental properties were investigated by nuclear magnetic resonance (NMR) and ultraviolet-visible spectroscopy (UV-Vis) to conform the structure and the band gap properties of the designed organic semiconductor. Thermodynamic features were investigated by thermogravimetric analysis (TGA) and corresponding differential thermal gravity (DTG), which indicate that the functional molecule CnPA-BTBT (n = 3–11) has a great stability in ambient conditions. Moreover, the results show that the binding ability of the amphiphilic molecule to water molecules was regulated by the odd-even alternating effect of the alkyl chain and the intramolecular coupling with BTBT. Furthermore, differential scanning calorimetry (DSC) and polarized optical microscopy (POM) were used to study the material properties in detail. As the length of the alkyl chain increased, the functional molecule CnPA-BTBT (n = 3–11) gradually changed from "hard" species with no thermodynamic changes to a transition one with a pair of thermodynamic peaks, and eventually to a "soft" one as a typical liquid crystal with clear observation of Maltese-cross spherulites. The cooling and freezing points were further studied, and the values and trends of their enthalpy and corresponding temperature fluctuated and alternated due to the volume effect, odd-even alternating effect, flexibility, and other functions of the alkyl chain. Three molecular models were proposed according to the thermodynamic study results, namely the brick-like model, transition model, and liquid crystal model. This work presents in-depth discussion on material structure and corresponding thermodynamic properties, and it is an experimental basis for the design, synthesis, optimization, and screening of target performance materials.  相似文献   
50.
In order to improve the performance of inorganic/organic composites, aluminum trihydroxide (ATH) core composites with a styrene‐ethylene‐butadiene‐styrene block copolymer grafted with maleic anhydride (MAH‐g‐SEBS) shell phase, and P‐N flame retardant as a synergistic agent, were prepared through an interface design. The effects of polyethylene glycol (PEG) content on the interfacial interaction, flame retardancy, thermal properties, and mechanical properties of high‐density polyethylene (HDPE)/ATH composites were investigated by small angle X‐ray diffraction, rotational rheometer, limiting oxygen index, thermogravimetric analysis (TGA), and tensile testing. The ATH synergistic effects of P‐N flame‐retardant improved the combustion performance of HDPE/ATH/PEG(3%)/MAH‐g‐SEBS/P‐N (abbreviated as HDPE/MH3/M‐g‐S/P‐N) composite by forming more carbon layer, increased the elongation at break from 21% to 558% compared to HDPE/ATH, and increased the interface thickness from 0.447 to 0.891 nm. SEM results support the compatibility of ATH with HDPE increased and the interfacial effect was enhanced. TGA showed the maximum decomposition temperature of the two stages and the yield of the residue at high temperature increased first and then decreased with the increase of PEG content. Rheological behavior showed the storage modulus, complex viscosity, and the relaxation time initially increased and then decreased with the increase of PEG content indicating PEG, M‐g‐S, and ATH powder gradually formed a partial coating, then a full coating, and finally an over‐coated core‐shell structured model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号