首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Most of the current analytical methods depend largely on laboratory-based analytical techniques that require expensive and bullky equipment,potentially incur costly testing,and involve lengthy detection processes.With increasing requirements for point-of-care testing(POCT),more attention has been paid to miniaturized analytical devices.Miniaturized electrochemical(MEC)sensors,including different material-based MEC sensors(such as DNA-,paper-,and screen electrode-based),have been in strong demand in analytical science due to their easy operation,portability,high sensitivity,as well as their short analysis time.They have been applied for the detection of trace amounts of target through measuring changes in electrochemical signal,such as current,voltage,potential,or impedance,due to the oxidation/reduction of chemical/biological molecules with the help of electrodes and electrochemical units.MEC sensors present great potential for the detection of targets including small organic molecules,metal ions,and biomolecules.In recent years,MEC sensors have been broadly applied to POCT in various fields,including health care,food safety,and environmental monitoring,owing to the excellent advantages of electrochemical(EC)technologies.This review summarized the state-of-the-art advancements on various types of MEC sensors and their applications in POCT.Furthermore,the future perspectives,opportunities,and challenges in this field are also discussed.  相似文献   

2.
Feng Pan 《结构化学》2020,39(1):7-10
Machine learning is an emerging method to discover new materials with specific characteristics.An unsupervised machine learning research is highlighted to discover new potential lithium ionic conductors by screening and clustering lithium compounds,providing inspirations for the development of solid-state electrolytes and practical batteries.  相似文献   

3.
Designing defect-engineered semiconductor heterojunctions can effectively promote the charge carrier separation.Herein,novel ceria(CeO2) quantum dots(QDs) decorated sulfur-doped carbon nitride nanotubes(SCN NTs) were synthesized via a thermal polycondensation coupled in situ depositionprecipitation method without use of template or surfactant.The structure and morphology studies indicate that ultrafine CeO2 QDs are well distributed inside and outside of SCN NTs offering highly dispersed active sites and a large contact interface between two components.This leads to the promoted formation of rich Ce3+ ion and oxygen vacancies as confirmed by XPS.The photocatalytic performance can be facilely modulated by the content of CeO2 QDs introduced in SCN matrix while bare CeO2 does not show activity of hydrogen production.The optimal catalyst with 10% of CeO2 loading yields a hydrogen evolution rate of 2923.8 μmol h-1 g-1 under visible light,remarkably higher than that of bare SCN and their physical mixtures.Further studies reveal that the abundant surface defects and the created 0 D/1 D junctions play a critical role in improving the separation and transfer of charge carriers,leading to superior solar hydrogen production and good stability.  相似文献   

4.
The demand on low-carbon emission fabrication technologies for energy storage materials is increasing dramatically with the global interest on carbon neutrality.As a promising active material for metal-sulfur batteries,sulfur is of great interest due to its high-energy-density and abundance.However,there is a lack of industry-friendly and low-carbon fabrication strategies for high-performance sulfur-based active particles,which,however,is in critical need by their practical success.Herein,based on a hail-inspired sulfur nano-storm(HSN)technology developed in our lab,we report an energy-saving,solvent-free strategy for producing core-shell sulfur/carbon electrode particles(CNT@AC-S)in minutes.The fabrication of the CNT@AC-S electrode particles only involves low-cost sulfur blocks,commercial carbon nanotubes(CNT)and activated carbon(AC)micro-particles with high specific surface area.Based on the above core-shell CNT@AC-S particles,sulfur cathode with a high sulfur-loading of 9.2 mg cm-2 delivers a stable area capacity of 6.6 mAh cm-2 over 100 cycles.Furthermore,even for sulfur cathode with a super-high sulfur content(72 wt%over the whole electrode),it still delivers a high area capacity of 9 mAh cm-2 over50 cycles in a quasi-lean electrolyte condition.In a nutshell,this study brings a green and industryfriendly fabrication strategy for cost-effective production of rationally designed S-rich electrode particles.  相似文献   

5.
Transition metal selenides have been widely studied as anode materials of sodium ion batteries(SIBs),however,the investigation of solid-electrolyte-interface(SEI)on these materials,which is critical to the electrochemical performance of SIBs,remains at its infancy.Here in this paper,ZnSe@C nanoparticles were prepared from ZIF-8 and the SEI layers on these electrodes with and without reduced graphene oxide(rGO)layers were examined in details by X-ray photoelectron spectroscopies at varied charged/discharged states.It is observed that fast and complicated electrolyte decomposition reactions on ZnSe@C leads to quite thick SEI film and intercalation of solvated sodium ions through such thick SEI film results in slow ion diffusion kinetics and unstable electrode structure.However,the presence of rGO could efficiently suppress the decomposition of electrolyte,thus thin and stable SEI film was formed.ZnSe@C electrodes wrapped by rGO demonstrates enhanced interfacial charge transfer kinetics and high electrochemical performance,a capacity retention of 96.4%,after 1000 cycles at 5 A/g.This study might offer a simple avenue for the designing high performance anode materials through manipulation of SEI film.  相似文献   

6.
常温常湿条件下Au/MeO~x催化剂上CO氧化性能   总被引:12,自引:0,他引:12  
王桂英  张文祥  蒋大振  吴通好 《化学学报》2000,58(12):1557-1562
利用共沉淀法制备了Au/MeO~x催化剂(Me=Al,Co,Cr,Cu,Fe,Mn,Ni,Zn)。在常温常湿条件下,考察了不同氧化物负载的金基催化剂的CO氧化性能。结果表明,氧化物种类对催化剂的活性和稳定性均有较大的影响。Cu,Mn,Cr等氧化物负载的金基催化剂的活性较差,而Zn,Fe,Co,Ni,Al等金属氧化物负载的金基催化剂可将CO完全氧化,又具有一定的稳定性,在相同反应条件下,CO完全转化时的稳定性顺序为Au/ZnO>Au/α-Fe~2O~3>Au/Co~3O~4>Au/γ-Al~2O~3≈Au/NiO。还发现水对Au/MnO~x催化剂的活性和稳定性有负作用,而对180℃焙烧制备的Au/ZnO-180催化剂的活性和稳定性均有明显的湿度增强作用。  相似文献   

7.
CXN天然沸石的研究2: 吸附性质   总被引:3,自引:0,他引:3  
李军  邱瑾  龙英才 《化学学报》2000,58(8):988-991
采用N~2,NH~3,CO~2,乙烯,丙烯,水,甲醇,乙醇,丙醇等作为吸附剂,研究了由我国CXN天然沸石改性制得的H-STI和Na-STI沸石的吸附性质,H-STI和Na-STI沸石的BET表面积及微孔孔体积约为420m^2/g和0.20m^3/g。根据NH~3和CO~2在H-STI沸石上的吸附等温线计算得到它们的吸附热分别为44.8和26.5kJ/mol。乙烯,丙烯,甲醇,乙醇,丙醇等在Na-STI沸石上的吸附等温线表明该沸石对有机分子的吸附具有链长选择性。在低分压下水相对于甲醇的吸附量表明沸石具有一定的疏水性质。  相似文献   

8.
Lithium-sulfur(Li-S)battery is regarded as one of the most promising next-generation energy storage systems due to the ultra-high theoretical energy density of 2600 Wh kg-1.To address the insulation nature of sulfur,nanocarbon composition is essential to afford acceptable cycling capacity but inevitably sacrifices the actual energy density under working conditions.Therefore,rational structural design of the carbon/sulfur composite cathode is of great significance to realize satisfactory electrochemical performances with limited carbon content.Herein,the cathode carbon distribution is rationally regulated to construct high-sulfur-content and high-performance Li-S batteries.Concretely,a double-layer carbon(DLC)cathode is prepared by fabricating a surface carbon layer on the carbon/sulfur composite.The surface carbon layer not only provides more electrochemically active surfaces,but also blocks the polysulfide shuttle.Consequently,the DLC configuration with an increased sulfur content by nearly 10 wt%renders an initial areal capacity of 3.40 mAh cm-2 and capacity retention of 83.8%during 50 cycles,which is about two times than that of the low-sulfur-content cathode.The strategy of carbon distribution regulation affords an effective pathway to construct advanced high-sulfur-content cathodes for practical high-energy-density Li-S batteries.  相似文献   

9.
Cost-effective atomically dispersed Fe-N-P-C complex catalysts are promising to catalyze the oxygen reduction reaction(ORR)and replace Pt catalysts in fuel cells and metal-air batteries.However,it remains a challenge to increase the number of atomically dispersed active sites on these catalysts.Here we report a highly efficient impregnation-pyrolysis method to prepare effective ORR electrocatalysts with large amount of atomically dispersed Fe active sites from biomass.Two types of active catalyst centers were identified,namely atomically dispersed Fe sites and FexP particles.The ORR rate of the atomically dispersed Fe sites is three orders of magnitude higher than it of FexP particles.A linear correlation between the amount of the atomically dispersed Fe and the ORR activity was obtained,revealing the major contribution of the atomically dispersed Fe to the ORR activity.The number of atomically dispersed Fe increases as the Fe loading increased and reaching the maximum at 1.86 wt%Fe,resulting in the maximum ORR rate.Optimized Fe-N-P-C complex catalyst was used as the cathode catalyst in a homemade Zn-air battery and good performance of an energy density of 771 Wh kgZn-1,a power density of 92.9 m W cm-2 at 137 m A cm-2 and an excellent durability were exhibited.  相似文献   

10.
Carbon dioxide and methane are two main greenhouse gases which are contributed to serious global warming.Fortunately,dry reforming of methane(DRM),a very important reaction developed decades ago,can convert these two major greenhouse gases into value-added syngas or hydrogen.The main problem retarding its industrialization is the seriously coking formation upon the nickel-based catalysts.Herein,a series of confined indium-nickel(In-Ni)intermetallic alloy nanocatalysts(InxNi@SiO2)have been prepared and displayed superior coking resistance for DRM reaction.The sample containing 0.5 wt.%of In loading(In0.5Ni@SiO2)shows the best balance of carbon deposition resistance and DRM reactivity even after 430 h long term stability test.The boosted carbon resistance can be ascribed to the confinement of core–shell structure and to the transfer of electrons from Indium to Nickel in In-Ni intermetallic alloys due to the smaller electronegativity of In.Both the silica shell and the increase of electron cloud density on metallic Ni can weaken the ability of Ni to activate C–H bond and decrease the deep cracking process of methane.The reaction over the confined InNi intermetallic alloy nanocatalyst was conformed to the Langmuir-Hinshelwood(L-H)mechanism revealed by in situ diffuse reflectance infrared Fourier transform spectroscopy(in-situ DRIFTS).This work provides a guidance to design high performance coking resistance catalysts for methane dry reforming to efficiently utilize these two main greenhouse gases.  相似文献   

11.
在298.15 K下,利用等温环境溶解反应热量计,测定了离子液体[Cnmim][H2PO4] (n= 3, 4, 5, 6) (1-烷基-3-甲基咪唑磷酸盐)在水中不同浓度的摩尔溶解热(ΔsolHm),根据Pitzer电解质溶液理论计算得到了标准摩尔溶解焓(ΔsolHm0)和Pitzer焓参数:βMX(0)L, βMX(1)L,和CϕL,并计算了表观相对摩尔焓。通过推导讨论,得到了离子液体[Cnmim][H2PO4](n= 3, 4, 5, 6)同系物每摩尔亚甲基对标准摩尔溶解焓的贡献。  相似文献   

12.
Two novel types of transition-metal-containing liquid crystals, bis(p-n-koxydithiobenzoato)nickel(II) (abbreviated as (CnO-DTB)2Ni), and (p-n-alkoxydithiobenzoato)(p-n-alkoxyperthiobenzoato)nickel(II) (abbreviated as (CnO-DTB)(CnO-PTB)Ni), were synthesized. It was found that the (CnO-DTB)2Ni complex for n = 8 has smectic H and C mesophases, and that the (CnO-DTB)2Ni complexes for n = 4 and 8 easily transform into the corresponding monoperthio complexes, nO-PTB)Ni, by heating at temperatures between 230°C and 285°C. It was confirmed that the transformation originates from an intermolecular reaction between the (CnO-DTB)2Ni complexes at high temperatures, and that the origin of the extra sulphurs in the resulting (CnO-DTB)(CnO-PTB)Ni complexes is the neighbouring (CnO-DTB)2Ni complexes. Interestingly, each of the (CnO-DTB)(CnO-PTB)Ni complexes (n = 4 and 8), has nematic mesophase and exhibits a unique double melting behaviour via the nematic phase, which is the first example in liquid crystals. The reversible transformation between the blue smectic rod-like (CnO-DTB)2Ni complex and the red nematic Λ-like (CnO-DTB)(CnO-PTB)Ni complex is possible.  相似文献   

13.
A variety of terminal chain modifications (Y) were made on the diacetylenes in which X=CnH2n+1, C12H25O and F, and Y=CH2CH(Me)C2H5, COCH3, C≡CC5H11, CnF2n+1CnH2n+1 and CH=CHCO2C3H7. Mesomorphic properties were determined by hot stage polarizing microscopy and DSC. These were compared with those for the dialkyl analogues (X=CmH2m+1, Y=CnH2n+1) and a series of 1- and 2-olefins (Y=CH=CHCnH2n+1 and CH2CH=CHCnH2n+1). The 1-olefin series showed wider range nematics than the dialkyl compounds, whereas the above modifications showed either narrow range nematic phases, no mesophase or higher melting temperatures. New transition temperature and enthalpy data are provided for some of the dialkyl and F-alkyl compounds previously reported, for comparisons. Preliminary birefringence data are also included along with the results of some heat and UV stability studies.  相似文献   

14.
The structures of ionic liquids (ILs) based on 1-alkyl-3-methylimidazolium chloride [Cnmim]Cl (n = 2, 4, 6), (1-ethyl-3-methylimidazolium chloride [C2mim]Cl, 1-butyl-3-methylimidazolium chloride [C4mim]Cl, and 1-hexyl-3-methylimidazolium chloride [C6mim]Cl) were elucidated by 1H NMR and 13C NMR experiments. The vaporization characteristics of these ILs were studied by thermogravimetric analysis. Dynamic and isothermal thermogravimetric experiments were conducted in this study. The purpose of the dynamic experiments was to determine the initial decomposition temperature of the experimental sample and the temperature range for the isothermal thermogravimetric experiments. The purpose of the isothermal experiments was to record the mass dependence of the sample on time in the experimental temperature range. The Langmuir equation and Clausius-Clapeyron equation were used to fit the experimental data and obtain the vaporization enthalpies of these ILs at the average temperature within the experimental temperature range. However, in order to expand the applicability of the estimated values and to compare them with the literature data, the vaporization enthalpy ΔHvap(Tav) measured at the average temperature was converted into vaporization enthalpy ΔHvap(298) at ambient temperature. The difference between the heat capacities of the ILs in the gaseous and liquid states at constant pressure, ΔlgCpmө proposed by Verevkin, was used in this conversion process. The experimental data for substance density and surface tension at other temperatures were obtained by referring to the literature. In addition, the data for density and surface tension at T = 298.15 K were obtained by applying the extrapolation method to the literature values for other temperatures. The vaporization enthalpy of the 1-octyl-3-methylimidazolium chloride IL [C8mim]Cl was estimated by using the new vaporization model we had proposed in our previous work and compared with the reference value. The estimated value for [C8mim]Cl was on the same order of magnitude as the reference value. We compared the vaporization enthalpies in the present study with those for the carboxylic acid imidazolium and amino acid imidazolium ILs ([Cnmim]Pro (n = 2-6) and [Cnmim]Thr (n = 2-6), respectively in our previous work. The results revealed that a change in the anion type affects the vaporization enthalpy of the ILs in the order amino acid imidazolium > carboxylic acid imidazolium > halogen imidazolium, when the cation is the same. Considering the structural differences between the three kinds of ILs, the abovementioned order may be related to the intermolecular hydrogen bonds. There were no intermolecular hydrogen bonds in the [Cnmim]Cl (n = 2, 4, 6) ILs studied here. Therefore, the vaporization enthalpy of [Cnmim]Cl (n = 2, 4, 6) was the lowest among the three kinds of ILs considered.  相似文献   

15.
A limited selection of ring modified diphenyldiacetylenes of the type where A=, Y=CnH2n+1, CF3, F, COMe, NH2, and NMe2, and A=, trans and cis with Y=F and trans with Y=C3H7, were synthesized. Mesomorphic properties were determined by hot stage polarizing microscopy and DSC. These properties were generally poorer than those found in the parent benzene compounds. This was also true of some pyrimidine analogues reported earlier. Birefringence values also decreased as expected.  相似文献   

16.
为了探索更长的碳链自由基l-CnH与O2反应的机理, 在CCSD(T)/CC-PVTZ+ZPVE//B3LYP/6-311++G(d,p)的计算水平下, 讨论了当n=5,6时, l-CnH+O2的各个异构化反应通道. 当n=5时, 主要反应通道为碳迁移过程, 生成主要产物为P2(CO2+C4H); 当n=6时, 碳-氧交换[产物为P1(CO+HC5O)]和氧迁移过程[产物为P3(3O+HC6O)]均为主要通道, 并具有很高的竞争性. 将所得结构与l-CnH(n≤4)+O2的反应机理进行了对比.  相似文献   

17.
Kiryong Ha  Hee-Jun Ahn 《Liquid crystals》2004,31(11):1525-1530
The orientation of E7 liquid crystal (LC) confined within 200 nm diameter cylindrical cavities of Anodisc membranes was investigated by FTIR dichroism techniques. The cavity walls of the confining pores were chemically modified with different length aliphatic acids (CnH2n+1COOH, n=5, 6, 7, 9) at 2 and 4% concentrations. From the FTIR spectra of the aliphatic acid-treated alumina Anodsic membranes, we found salt formation between the -COOH group of the aliphatic acids and the Anodisc membranes. From the FTIR spectra of LC-filled Anodisc membranes, we found an abrupt alignment direction change, from parallel to perpendicular, of the LC molecules along the long axis of the cavities between n=6 and n=7 for the 2% concentration of aliphatic acid. However for the 4% concentration of aliphatic acid the parallel to perpendicular alignment direction of LC molecules changed between n=5 and n=6. The same trend was previously observed for 2H NMR measurements by other researchers.  相似文献   

18.
以CCSD(T)/CBS方法的结合能计算结果为标准, 选择CAM-B3LYP-D3BJ/def2-SVPD密度泛函理论方法计算了甲氧基柱[5]芳烃(MeP5)与CnH2n+2(n=1~10, 12, 14, 16) 复合物的结合能, 结果表明, 它们之间存在强烈的相互作用, 且随着烷烃分子碳链的增长而增大; 热力学函数计算结果表明, 在298.15 K, 101325 Pa下, MeP5与CnH2n+2(n=3~10, 12, 14, 16)形成复合物的过程中, ΔG和ΔH均小于零, 是焓驱动的自发过程. 烷烃与MeP5之间C―H…π和C―H…O的协同作用是主客体复合物稳定化的起因, 用二代绝对局域分子轨道能量分解(ALMO-EDA)方法分析此协同作用, 发现其中静电作用和色散作用的贡献相近, 二者加和约占总吸引的94%, 极化能和电荷转移能仅占6%.  相似文献   

19.
对直链烷烃和支链烷烃的相对稳定性统一的解释仍然没有定论,并且一直在进行着。以单取代的烷烃体系CnH2n+1―R (n = 3, 4, 5, 6;R = OH, OCH3, NH2, NO2, F, Cl, CN, CHO)为例,本文对支链效应的有效性和本质进行了研究。与传统的基于轨道的描述不同的是,本文采用了密度泛函理论的总能量和基于新能量分配方案的能量分量[见Liu, S. B. J. Chem. Phys. 2007, 126, 244103]。新型能量分解方法计算结果表明,静电效应和立体效应等对支链效应的存在都起着重要作用,但是它们均不能单独用来解释支链效应的本质。用双变量(静电势和空间位阻)组合,发现单取代烷烃衍生物的异构化反应主要影响因子是静电势作用,空间位阻效应的影响是次要的。此外还发现了香农熵差与Fisher信息差之间的线性关系,未能发现总能量差或者分能量差值和Fisher信息或者Shannon熵之间的关系。这与前人发现是一致的。  相似文献   

20.
郭一江  陈庆德  沈兴海 《应用化学》2019,36(10):1186-1193
合成了新型离子液体1-烷基-3-甲基咪唑苯甲酰基三氟硼酸盐[Cnmim][BTB](n=4,6,8),并通过NMR、差热、热重等方法研究了其基础物化性质。 结果发现,3种离子液体的分解温度在200 ℃左右;随着阳离子碳链的增长,离子液体的粘度、熔点逐渐升高,并从亲水性变为疏水性。 尤其是疏水性的[C6mim][BTB]和[C8mim][BTB]在与水长时间的混合中表现出较好的稳定性,基本解决了四氟硼酸盐离子液体亲水性强、$BF^{-}_{4}$易水解的缺点,有望用于乏燃料后处理并提高临界安全。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号