首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   4篇
  国内免费   1篇
化学   11篇
物理学   31篇
  2017年   1篇
  2014年   1篇
  2013年   1篇
  2012年   3篇
  2011年   3篇
  2010年   2篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   4篇
  2002年   6篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   3篇
  1997年   2篇
  1995年   1篇
  1994年   1篇
  1984年   1篇
排序方式: 共有42条查询结果,搜索用时 15 毫秒
31.
在化学教学实践中,我们感到:学生接受能力的高低是直接影响教学质量的因素之一。如何通过不同的途径,逐步提高学生的接受能力呢?教学中,我们主要采取了以下措施。一、启发觉悟激发兴趣初三学生初学化学时,正面临着众多学科的学习,即将到来的毕业考试。对于枯燥无味的元素符号、分子式;难懂难记的化学方程式的学习难免会产生一定的畏难情绪。若不及时克服,就会使部分同学丧失学习上的信心,这样也就无从谈到提高学生的接受能力了。据了解,有的学生就曾说:“化学真难学,将来我也难考上大学,干么还学化学呢?”  相似文献   
32.
基于遗传算法混合工质热泵多参数优化   总被引:6,自引:0,他引:6  
本文将人工智能之一的遗传算法应用于混合工质热泵系统,在对热泵进行模拟的基础上构造了系统性能函数,对冷凝压力、蒸发压力以及回热度进行了多参数的优化,得到了使系统COP最大时的各参数的最佳值。发现在进行制冷/热系统多参数组合优化时,遗传算法全局寻优以及收敛能力与传统的优化方法相比,性能有了较大的提高。  相似文献   
33.
HFC134a/HCFC141b混合气体水合物相平衡特性   总被引:4,自引:0,他引:4  
1引言致冷剂气体水合物具有适合空调蓄冷的理想性质,其形成结晶的温度在8~12℃,在结晶形成“暖冰”时,释放较大的反应热(330~380kJ/kg),并且具有较好的传热性能[1~2]。但早期研究的主要是R11和R12的水合物,其致冷剂是典型的大气臭氧层破坏物质,现已受到了严格的限制。研究和开发新型的CFC替代物气体水合物已成为当前的重点[3]。近年来,中国科学院广州能源研究所在国家自然科学基金和广东省科学基金的支持下,展开了对新型致冷剂气体水合物相变蓄冷材料的研究。文献[4]首次报告了对CFC替代物HFC152a/HCFC141b混合气体水…  相似文献   
34.
The microscopic visualization experiment on the formation process of HCFC-141b refrigerant gas hydrate has been investigated, and the morphological photos of hydrate formation process have been obtained. The results show that gas hydrate originally nucleated on the interface of refrigerant HCFC-141b and water under the condition of supercooling, then the hydrate grows continually due to the inducement of formed nucleation and diffusion of refrigerant. The formation of gas hydrate presents an arboreous phenomenon. The fractal dimension of the hydrate formation morphology on different stages was calculated. The calculating results indicate that the initial stage of the hydrate formation belongs to fractal growth, and the dimension is about 1.52. Based on the fractal theory, an RIN-DLA (random inducement nucleation-diffusion limited aggregation) model for the HCFC-141b hydrate growth was developed. The hydrate growth process was simulated with the developed model, and the fractal dimension for the simulated  相似文献   
35.
通过对致冷剂HCFC-141b气体水合物结晶生成过程的显微观测研究,得到了水合物的结晶生成过程微观图像,认为水合物的生成是由于HCFC-141b致冷剂与水在过冷的条件下在界面接触处率先成核,成核诱导与致冷剂的扩散导致水合物不断长大,并呈现出枝状生长的现象.对水合物生成过程中不同阶段的图像进行维数计算,结果表明该水合物结晶生成过程初期属于分形生长,其生长的维数为1.52.应用分形理论,建立了HCFC-141b水合物结晶生长的RIN-DLA (Random Inducement Nucleation-Diffu-sion Limited Aggregation)模型,并对水合物的结晶生成过程进行了计算机模拟,计算并比较了实际图形和模拟图形的维数.  相似文献   
36.
气体水合物生成机理是气体水合物研究领域的一个热点,对气体水合物技术的应用有重要意义。先前实验中作者首次发现铁丝同十二烷基苯磺酸钠水溶液的适当组合可以促使HCFC141b气体水合物快速结晶和生长。本文进一步揭示了十二烷基苯磺酸钠和不同金属丝对HCFC141b气体水合物生成过程的影响机理。作者结合国内外已有的研究成果总结得到了促使气体水合物快速结晶成核和生长的关键因素,并从传热传质角度提出了促进气体水合物快速结晶成核和生长的一些建议。  相似文献   
37.
二元贮冷水合盐熔解热的差示扫描量热法研究   总被引:1,自引:0,他引:1  
用差示扫描量热法(differential scanning calorimetry)对二元贮冷水合盐的相变温度与熔解热进行了研究,实验结果对认识多元贮冷水合盐的相变过程的相变机理及选配贮冷水合盐材料,具有重要意义。  相似文献   
38.
在离子液体水溶液作为新一代优良吸收工质的工业应用研究和开发中,对该体系的物理化学性质(诸如离子液体在水中存在性状及其酸碱性问题等)的深入认识和掌握尤为重要. 本文采用pH酸度计和精密pH试纸两种方法,对水质量分数分别为0.04~0.95的1-乙基-3-甲基咪唑醋酸盐([EMIM]Ac)和0.01~0.96的1-己基-3-甲基咪唑氯盐([HMIM]Cl)离子液体水溶液的pH值进行测试和定量分析. 测试结果表明pH酸度计和精密pH试纸两种方法的测试结果有较大的差异,这种差异是由于离子液体-水混合体系中局部形态与整体特性不同造成的. 本文成功拟合了pH精密试纸测定值,计算获得的这两种离子液体水溶液的酸浓度与测定值基本符合,精密试纸测定的pH值可用于表征离子液体水溶液整体酸碱特性. 基于离子液体在水溶液中形成惰化聚合膜的假设,提出了分别表征聚合膜水溶解度和离子液体水溶液水活度系数的溶液理论模型,根据溶液相平衡理论建立了聚合膜中氢离子浓度与水溶液中氢离子浓度差别的计算方法,成功拟合了pH酸度计测定值. 研究结果为离子液体水溶液体系的pH值和酸碱度分析提供了实验依据和预测理论模型.  相似文献   
39.
含乙二醇水合物形成条件理论与实验研究   总被引:3,自引:1,他引:2  
利用可视化高压流体测试装置在0.78~5.17 MPa压力范围内测定了乙二醇水溶液中合成天然气(甲烷、乙烷和丙烷的混合物)水合物的形成条件。根据vanderWaals-Platteeuw的理想溶液等温吸附理论和Moshfeghian-Maddocd的数学模型,给出了含抑制剂体系气体水合物相平衡计算数学模型。计算结果表明该模型可较好地预测含抑制剂(乙二醇)体系的水合物形成条件。  相似文献   
40.
混合制冷剂气体水合物生成及融解过程实验研究   总被引:6,自引:0,他引:6  
1引言城市建筑物中,空调作为最大用电设备之一,夏季占建筑物耗电总量的一半以上,为了缓解高峰用电负荷并有效利用低谷电力,解决峰期用电紧张的矛盾,达到总体节能的目的,空调蓄冷移峰节电技术被认为是实现城市供电平衡和建筑节能的重要手段。作为实用的空调蓄冷技术,最为重要的是其蓄冷材料的相变温度与空调工况相适应,即在5~12℃发生相变,且相变潜热大,传热性能好.氟里昂气体水合物作为蓄冷材料,具有适合空调储冷的理想性质,可使水在8~12℃水合结晶,形成暖冰时释放反应热,其反应热与结冰潜热相当[1]。然而,由于一些氟里昂…  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号