首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   307篇
  免费   26篇
  国内免费   34篇
化学   1篇
力学   285篇
综合类   1篇
数学   27篇
物理学   53篇
  2024年   7篇
  2023年   22篇
  2022年   21篇
  2021年   17篇
  2020年   9篇
  2019年   26篇
  2018年   23篇
  2017年   9篇
  2016年   10篇
  2015年   18篇
  2014年   35篇
  2013年   23篇
  2012年   20篇
  2011年   22篇
  2010年   23篇
  2009年   16篇
  2008年   18篇
  2007年   12篇
  2006年   15篇
  2005年   16篇
  2004年   3篇
  1995年   1篇
  1957年   1篇
排序方式: 共有367条查询结果,搜索用时 15 毫秒
31.
洪正  叶正寅 《力学学报》2018,50(6):1356-1367
激波与湍流相互作用(shock-turbulence interaction,STI)是空气动力学研究中的一个基础问题.基于格心有限差分法(cell-centered finite difference method,CCFDM)求解器Helios,采用五阶加权紧致非线性格式(weighted compact nonlinear scheme,WCNS)对各向同性湍流通过正激波的情形进行直接数值模拟(direct numerical simulation,DNS).对湍流相关物理量进行统计,分析结果表明,在湍流中波后的密度、温度和压力较无湍流情形下略小,而速度则略大,均在波后呈现短暂过冲然后缓慢向理论值逼近的变化趋势;波后流向雷诺应力突降随之快速增长又衰减,呈现非单调变化趋势,线性相互作用分析(linear interaction analysis,LIA)将其归结为波后能量从声模式转移为涡模式方式,与流向不同,横向雷诺应力突增后单调衰减,波后雷诺应力各向异性明显且随下游距离逐渐增强;波后湍动能突增后呈现非单调变化趋势;泰勒微尺度和Kolmogorov尺度过激波后均明显减小,说明波后湍流长度尺度变小,从而对波后网格的分辨率提出了更高的要求;密度、温度和压力过激波后脉动均方根均增加,密度和压力脉动强度减小,温度脉动强度增大.   相似文献   
32.
现代高速飞行器结构热模态频率特性试验研究,对这类飞行器设计校核和飞行安全具有重要意义。根据飞行过程中遭受的气动加热特性设计了瞬态热环境模拟系统,同时,根据高温环境的特点对测试中的激励和测量方式进行了重新设计,成功地将普通激振器应用于高温结构模态试验,最终将热环境模拟系统与振动测试系统组合,形成一套考虑瞬态热影响的热模态试验系统,实现了瞬态热环境下结构模态的地面测试。对一个切尖三角翼测量了各个加热区的温度随加热时间的变化,验证了加热温度控制的精确性;在纯随机激励下对测得的激励和振动响应信号采用短时傅里叶变换(Short Time Fourier Transformation,STFT)进行时变模态参数辨识,获得了前四阶模态频率随加热时间的变化,并与结构有限元数值计算结果进行了比较,试验与计算结果吻合得很好,验证了该试验方法对热模态测试问题的有效性和准确性。通过分别对瞬态和稳态热环境下结构模态频率试验和计算结果的分析,探讨了结构瞬态温度场对模态频率影响的机理,揭示了结构内部存在的热应力和材料属性的变化,是决定模态频率随加热时间变化趋势的内在原因。  相似文献   
33.
DH-36钢的塑性流动统一本构关系研究   总被引:4,自引:0,他引:4  
通过对DH-36钢动态应变时效的规律和试验数据进行系统分析, 发展和建立了描写第3种动态应变时效的本构模型. 然后基于热激活物理概念本构模型和塑性流动应力组合原理, 加入对第3种动态应变时效的描述, 获得了统一本构模型. 该模型不仅可以描写第3种动态应变时效, 还可以预测DH-36钢在温度77K~1000K, 应变率0.001s^{-1}~3000s^{-1}范围内的塑性流动应力,通过比较发现统一本构模型预测结果与试验结果吻合很好.   相似文献   
34.
宋静文  吕震宙 《力学学报》2014,46(4):601-610
为了根据不同需求找到输入变量相关情况下最优重要性测度分析方法,非常有必要对现有重要性测度方法之间的关系进行探究比较. 分别以不含交叉项和包含交叉项的二次多项式输出模型为例,解析推导了相关正态输入变量情况下基于协方差分解的重要性测度指标,包括总贡献、结构贡献和相关贡献. 进一步以所推导的解析结论为基础,理论推导了传统基于方差的重要性测度指标与基于协方差分解的重要性测度指标之间的关系.并从特殊二次多项式模型的研究结果对一般模型做出推断,然后从高维模型分解的角度验证所推断的结论,并详细阐述了不同重要性测度指标的优缺点. 最后结合具体算例深入地分析了各指标之间的关系,为输入变量相关情况下结构性能对输入特性的重要性分析与工程设计提供指导.   相似文献   
35.
为了提高现有基本变量对样本均值贡献的区域重要性测度指标的稳定性和收敛性, 提出了一个新的衡量基本变量内部各个区域对输出均值影响的重要性测度指标.并将其进一步扩展提出了一个衡量基本变量内部各个区域对输出总方差分解式中一阶方差影响的区域重要性测度指标.分析了所提指标的性质, 并探讨了它们与现有基本变量对样本均值贡献区域重要性测度指标和对样本方差贡献的区域重要性测度 指标之间的关系. 另外, 针对所提指标的特点, 还建立了其求解高效的稀疏网格积分法.算例结果表明, 所提新的基本变量对输出均值贡献的区域重要性测度指标不仅继承了现有指标的优点, 而且比现有指标具有更高的收敛性和稳定性.所提基本变量对一阶方差贡献的区域重要性指标能够在基本变量对样本方差贡献区域重要性测度的基础上, 进一步提供基本变量内部各个区域对总方差的一阶分量的影响信息.而所建稀疏网格积分法可以在保证计算精度的同时大幅度提高基本变量区域重要性分析的效率.  相似文献   
36.
将损伤力学-有限元方法应用于飞机结构疲劳寿命预估中,对机翼蒙皮压窝形式的铆接结构进行了寿命计算和分析,得到了结构的疲劳寿命和疲劳损伤演化过程,并对铆接试验件进行了疲劳试验,将损伤力学方法的预测结果与试验结果进行了比较。分析结果反映出结构疲劳损伤累积初期较为缓慢、后期速率急剧上升的过程,符合损伤演化规律。在180MPa载荷水平下,计算寿命与试验平均寿命的相对误差为11.3%,满足工程精度要求。从而验证了损伤力学方法应用于实际工程结构寿命预测的可行性和可靠性。  相似文献   
37.
对DH36钢在温度从293~800 K、应变率为0.001和0.1 s-1的拉伸塑性流动特性进行实验研究,通过端口形貌图对变形前后的试样进行了微观分析,结果表明:(1)在实验温度范围内,0.001和0.1 s-1的应变率下,第三型应变时效现象出现,随应变率的增加,时效发生的温度区域移向更高温度;(2)第三型应变时效的发生与合金原子在晶界和晶粒中大量的第二相析出强化有关联;(3)建立包含第三型应变时效现象的统一本构模型,通过比较该模型能够较好的预测DH36的塑性拉伸流动应力。  相似文献   
38.
低声爆设计方法已成为新一代军民用超声速飞机研制过程中必须解决的关键难题之一。针对传统SGD低声爆外形反设计方法无法对声爆近场非线性效应进行描述和分析的缺点,提出了利用CFD方法求解得到的声爆近场压力分布代替F函数进行低声爆反设计的方法。声爆近场预测采用点-点对接的结构/非结构混合网格,充分利用非结构网格对复杂外形适应性强和结构化网格计算效率高的优点。结果分析表明,基于改进后的低声爆反设计方法得到的方案在声爆超压以及感觉噪声级等方面都比基于原始SGD方法得到的方案有较大改善。  相似文献   
39.
SPH方法在液固撞击数值模拟中的应用   总被引:1,自引:0,他引:1  
王安文  徐绯  张岳青 《计算物理》2012,29(4):525-533
对液滴分别采用光滑粒子流体动力学(SPH)和任意拉格朗日-欧拉(ALE)两种方法模拟液滴高速冲击有机玻璃(PMMA)过程中液滴的变形、固体结构的损伤.结果表明:两种算法中结构表面的损伤情况与Brunton实验数据吻合,证明了数值分析方法的可行性和精确性;此外,对比发现SPH方法模拟液固撞击过程更具有优势.利用SPH方法分析实际工程问题,验证了两种工程处理技术可以有效地提高螺旋桨抗雨水的冲击能力.  相似文献   
40.
针对同时存在随机不确定性和模糊不确定性的可靠性分析问题,提出了两种高效解决方法。一种是迭代马尔科夫链鞍点逼近法,该方法的基本思想是给定隶属水平下由迭代马尔科夫链和一次鞍点逼近法求得可靠度上下限,不同的隶属水平对应不同的可靠度上下限,遍历隶属水平的取值区间[0,1]即可求得可靠度隶属函数,与传统的两相Monte Carlo数字模拟法和迭代一次二阶矩法相比,该方法具有效率高和对非正态基本随机变量不需要进行正态转换的优点;第二种方法是迭代条件概率马尔科夫链模拟法,该方法在求解给定隶属度水平下的可靠度上下限时,由条件概率公式引入一个非线性修正因子,该因子的引入大大提高了功能函数为非线性的可靠性问题的求解精度。本文算例验证了所提方法的优越性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号