首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   2篇
力学   3篇
物理学   1篇
  2023年   1篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
洪正  叶正寅 《力学学报》2018,50(6):1356-1367
激波与湍流相互作用(shock-turbulence interaction,STI)是空气动力学研究中的一个基础问题.基于格心有限差分法(cell-centered finite difference method,CCFDM)求解器Helios,采用五阶加权紧致非线性格式(weighted compact nonlinear scheme,WCNS)对各向同性湍流通过正激波的情形进行直接数值模拟(direct numerical simulation,DNS).对湍流相关物理量进行统计,分析结果表明,在湍流中波后的密度、温度和压力较无湍流情形下略小,而速度则略大,均在波后呈现短暂过冲然后缓慢向理论值逼近的变化趋势;波后流向雷诺应力突降随之快速增长又衰减,呈现非单调变化趋势,线性相互作用分析(linear interaction analysis,LIA)将其归结为波后能量从声模式转移为涡模式方式,与流向不同,横向雷诺应力突增后单调衰减,波后雷诺应力各向异性明显且随下游距离逐渐增强;波后湍动能突增后呈现非单调变化趋势;泰勒微尺度和Kolmogorov尺度过激波后均明显减小,说明波后湍流长度尺度变小,从而对波后网格的分辨率提出了更高的要求;密度、温度和压力过激波后脉动均方根均增加,密度和压力脉动强度减小,温度脉动强度增大.   相似文献   
2.
洪正  叶正寅 《气体物理》2019,4(1):33-44
湍流边界层流动是一种广泛存在于飞行器内部和外部的流动现象,是基础理论和模型验证的重要研究对象.能够捕捉大部分流动细节且计算量适中的大涡模拟(large-eddy simulation,LES)方法在湍流数值模拟中得到了越来越广泛的应用.文章基于格心有限差分方法,使用4阶紧致中心格式离散N-S方程无黏项,分别应用5种不同的亚格子(subgrid-scale,SGS)模型,即隐式,SM(Smagorinsky model),DSM(dynamic Smagorinsky model),WALE(wall-adapting local eddy-viscosity model)和CSM(coherent structures model),对Re = 3 000,Ma = 0.5的等温壁面槽道流动进行了大涡模拟研究.与实验值和直接数值模拟(direct numerical simulation,DNS)结果对比后发现,流场平均温度、平均密度等热力学量以及平均流向速度对亚格子模型不敏感,不适宜作为判断模型优劣的判据.亚格子模型在壁面附近的耗散越大,壁面摩擦速度以及阻力系数就越小.对于与速度相关的脉动量来说,不同模型得到的结果在壁面和脉动峰值附近误差比较大,中心线附近较小;显式模型结果在流向速度峰值处均高于参考值,而在展向和壁面法向速度脉动峰值处则均偏低.考虑显式的4种模型在壁面附近的涡黏系数分布,DSM和CSM曲线满足涡黏系数与无量纲壁面距离3次方成正比的分布规律,SM曲线斜率偏小而WALE曲线斜率偏大.   相似文献   
3.
洪正  叶正寅 《力学学报》2021,53(5):1302-1312
受自然界鸟类羽毛的柔性特征启发, 利用数值模拟的手段进行了各向异性柔性壁面对亚音速边界层中T-S(Tollmien-Schlichting)波空间演化的影响研究. 首先, 刚性壁面上的数值结果与线性理论预测的结果吻合得很好, 验证了所采用的高阶精度格心型有限差分方法的可靠性. 在此基础上, 将部分刚性壁面替换为柔性壁面, 结果表明柔性壁面能够减小甚至消除T-S波的不稳定增长区间, 即抑制T-S波的发展, 因而具有推迟边界层转捩的潜力. 柔性壁面的变形不仅有对应T-S波波形的成分, 还会因柔性段前缘引起波长更长, 与T-S波频率相同的壁面波动. 随后开展的参数研究表明, 增大壁面阻尼削弱了前缘引起的壁面波动; 增大壁面的刚度、张力以及弹性系数都会使得壁面的刚性增强, 整体变形幅度下降; 柔性壁面的支撑杠杆臂倾角越大, 壁面刚性越强. 以上参数的增大均会使得柔性壁面抑制T-S波的效果降低. 此外, 当流动反方向流过时, 抑制T-S波的效果也会明显下降. 这些研究结果旨在揭示鸟类高效飞行的部分奥秘, 为被动减阻提供新的思路.   相似文献   
4.
吴康灵  叶正寅  叶坤  洪正 《力学学报》2023,55(4):874-884
鸟类羽毛在飞行中的物理性质是仿生力学关心的重要问题之一.基于CFD/CSD数值模拟方法研究了羽毛微结构在气流作用下的变形和力学特征,揭示了鸟类静止时羽毛蓬松、而在飞行状态下紧贴皮肤表面保持表面光滑的物理机制.首先,通过对鸟类羽毛在显微镜下的观察,将羽毛分解成典型简单微结构以模仿羽枝单元,从而对羽毛外形和结构进行建模,之后,采用CFD/CSD方法分析比较了两种典型羽枝模型结构(片状和枝状羽枝单元)的变形和力学特征,最后,基于上述片状羽枝模型进一步研究了来流方向对羽枝变形的影响机理及多根排列羽枝的变形和力学特征.结果表明:在一定风向的范围内,羽毛在气流下都具有保持紧贴皮肤表面的变形趋势,这种紧贴壁面的趋势只有在气流与羽轴几乎垂直时才会改变;在来流侧滑角为45°时,羽枝沿皮肤表面法向下压的变形最为显著,尖端位移达原始高度的约97%;多根排列的羽枝在顺流方向气动载荷逐渐下降,与迎风首根羽枝最大差距约11%.此研究工作对于理解鸟类飞行时羽毛的力学特性有明确的学术价值.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号