首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   854篇
  免费   250篇
  国内免费   292篇
化学   512篇
晶体学   17篇
力学   133篇
综合类   26篇
数学   165篇
物理学   543篇
  2024年   3篇
  2023年   29篇
  2022年   38篇
  2021年   23篇
  2020年   20篇
  2019年   37篇
  2018年   63篇
  2017年   23篇
  2016年   42篇
  2015年   45篇
  2014年   62篇
  2013年   42篇
  2012年   50篇
  2011年   45篇
  2010年   46篇
  2009年   60篇
  2008年   51篇
  2007年   49篇
  2006年   61篇
  2005年   53篇
  2004年   42篇
  2003年   55篇
  2002年   20篇
  2001年   27篇
  2000年   24篇
  1999年   40篇
  1998年   40篇
  1997年   32篇
  1996年   31篇
  1995年   29篇
  1994年   21篇
  1993年   23篇
  1992年   24篇
  1991年   27篇
  1990年   19篇
  1989年   22篇
  1988年   10篇
  1987年   9篇
  1986年   9篇
  1985年   7篇
  1984年   15篇
  1983年   4篇
  1981年   5篇
  1980年   5篇
  1963年   1篇
  1960年   1篇
  1958年   1篇
  1956年   2篇
  1955年   3篇
  1954年   1篇
排序方式: 共有1396条查询结果,搜索用时 15 毫秒
31.
采用中红外波段连续可调谐二极管激光器和自行研制的低温吸收池, 测量了温度为296 K, 252 K, 213 K, 173 K时, 3.38 μm附近13CH4分子的四条跃迁谱线的氮气和空气加宽光谱; 首次通过实验获得空气和氮气对13CH4分子的碰撞加宽系数, 以及谱线加宽系数的温度依赖系数. 实验过程中, 利用Voigt线型对所测量的光谱进行拟合. 实验结果表明, 氮气和空气对13CH4分子的碰撞诱导加宽系数随温度的降低而增大; 相同温度下, 氮气对13CH4分子的碰撞加宽系数普遍大于空气加宽系数. 实验数据为地球和外星体大气遥感探测提供了依据.  相似文献   
32.
光电催化(PEC)氧化法是一种使用半导体电极材料在光和电的共同作用下处理水中有机污染的有效方法.在PEC工艺中,施加偏压不仅可以利用电催化对有机污染物进行降解,而且在偏压作用下,光生电子-空穴对能够得到有效的分离和传输,从而大大提高了机物污染物的去除速率.尽管PEC技术已经取得了许多重要的突破,但是能量转换效率仍然无法满足实际应用.因此,开发具有优异性能,良好稳定性和低成本的光电极材料是一项具有挑战性的研究工作.本文采用两步电沉积法制备了BiPO4纳米棒/还原氧化石墨烯/FTO复合光电极(BiPO4/r GO/FTO).电镜结果表明,电沉积制得的纳米棒状磷酸铋均匀负载在石墨烯纳米片层表面.采用甲基橙为模型体系,考察了复合光电极的光电催化活性.BiPO4/r GO/FTO复合电极的光电催化降解速率是BiPO4/FTO光电极的2.8倍,显示出优良的光电催化活性.实验进一步研究了工作电压和BiPO4沉积时间对甲基橙光电降解性能的影响.最佳的BiPO4沉积时间为45 min,最佳工作电压为1.2 V.捕获实验和ESR实验表明羟基自由基(·OH)和超氧化物自由基(·O2-)是该电极的主要活性物种.BiPO4/r GO/FTO复合电极经过四次循环实验后其降解甲基橙效率保持不变,显示出高稳定性,采用光电流,交流阻抗及其荧光测试对其光催化机理进行推测.结果表明该复合光电极具有高PEC活性的主要原因是:石墨烯的引入加快了BiPO4的电子空穴的分离,拓宽了石墨烯的可见光吸收范围;同时,石墨烯诱导产生的BiPO4混合相也进一步促进了光生电子空穴的分离,提高了光电降解活性.  相似文献   
33.
为解决船用捷联惯导系统传递对准仿真中载体机动方式与实际差别较大的问题,提出了基于舰船空间运动的传递对准精度考核的仿真验证系统,提高载体机动方式仿真逼真度。仿真验证系统通过舰船空间运动建模,提供接近真实运动环境的空间运动参数;通过设计空间变换算法,实现了空间运动参数与主惯导惯性器件模拟输入的转化;通过杆臂及挠曲变形计算,实现了子惯导惯性器件模拟输入的转化;文中给出了各模块的算法及解算流程。速度+姿态传递对准算法仿真验证结果为10 s内水平失准角精度优于0.02;方位失准角精度优于0.05。仿真验证试验结果表明了该方案的可行性和实用性,该方案为其他领域的传递对准方案分析及验证提供了有效的参考依据。  相似文献   
34.
利用密度泛函理论在B3LYP/6-31G(d)基组水平上研究了具有zigzag边界的石墨烯量子点,结果表明不同大小的石墨烯量子点的基态都是具有磁性的自旋三重态.其磁性一方面来源于zigzag边界上占有凸出位置的碳原子,另一方面来源于带有孤对电子的碳原子.从整体上看,除6b结构外,其他结构的能隙随着苯环数量的增加逐渐减小,而附加电荷却使体系能隙明显减小.用含时密度泛函理论(TD-DFT)对能隙为3.83 eV的由六个苯环排列成的三角形结构进行了激发态的计算,发现第十七激发态强度最大,能量为3.93 eV,对 关键词: 石墨烯量子点 磁性 能隙 激发态  相似文献   
35.
 束流寿命是衡量储存环性能的重要参数,直接影响着光源的正常运行。对于合肥光源(HLS),托歇克(Touschek)寿命是影响束流寿命的重要因素。为了研究Touschek寿命,需要探测由于Touschek效应所损失的电子。介绍了束流寿命的概念,说明了Touschek效应的原理和机制,利用蒙特卡罗软件EGSnrc模拟计算了丢失电子与真空壁的相互作用,通过塑料闪烁体探测器和光电倍增管获得了由于Touschek效应丢失的电子所产生的信号,然后将信号经过放大甄别和符合处理后,用计数器测量了计数率。结果表明:由于Touschek效应而成对丢失的电子的确存在,且电子损失率随流强的降低而减小。这为下一步储存环的能量标定工作做好了前期准备。  相似文献   
36.
章瑛  王宏亮  吴建一 《化学通报》2014,77(9):919-921
以2-氯-5-氯甲基吡啶(CCMP)、无水乙二胺和硝基胍为原料,运用串联反应方法合成了吡虫啉[化学名:1-(6-氯-3-吡啶甲基)-N-硝基-2-咪唑啉亚胺]。该方法反应中间体无需纯化处理,操作简单,同时解决了活性中间体进一步进行副反应的难题。通过单因素实验,探讨了pH、反应溶剂、温度以及时间等因素对产物收率的影响,得到的优化工艺条件为:以乙腈为溶剂,nCCMP∶n无水乙二胺∶n硝基胍=1∶5∶1,于30℃反应120min,产率可达96.35%。其结构经1H NMR、13C NMR、IR表征。  相似文献   
37.
壳聚糖具有抗菌、抗氧化、增强胶凝特性以及可作为生物活性分子的微型或纳米载体等优点,因此其化学改性和应用近年来受到广泛关注。然而,壳聚糖既不溶于有机溶剂也不溶于水,极大地限制了它的应用。在改性的壳聚糖中,聚乙二醇化壳聚糖不仅能保持壳聚糖的优点,还能提高水溶性,并能有效运输生物活性分子。因此,本文总结了2008-2012年聚乙二醇化壳聚糖作为紫杉醇、阿霉素、5-氟尿嘧啶等小分子载体的最新进展,为今后聚乙二醇化壳聚糖的研究提供有益参考和理论依据。  相似文献   
38.
提出了固相萃取-气相色谱法测定饮用水中12种农药残留量的方法。取水样250mL过固相萃取柱,用乙酸乙酯、正己烷各5mL洗脱,经无水硫酸钠脱水,采用DB-5MS毛细管色谱柱分离,电子捕获检测器检测。溴氢菊酯的线性范围为0.05~0.5mg·L-1,其他农药的线性范围均在0.01~0.1mg·L-1。溴氰菊酯的检出限为24.2ng·L-1,其他农药的检出限均低于10ng·L-1。12种农药的加标回收率在70.0%~110%之间,相对标准偏差(n=6)均小于10%。  相似文献   
39.
以钛酸正丁酯为前驱体, 采用溶胶-凝胶-水热晶化法在不锈钢(SS)表面制备TiO2纳米膜. 利用X射线衍射(XRD)、Raman光谱、场发射扫描电子显微镜(SEM)、原子力显微镜(AFM)和俄歇电子能谱(AES)表征了TiO2纳米膜的晶型、表面形貌和表面化学组成. 通过极化曲线和电化学阻抗谱(EIS)研究了TiO2纳米膜的耐蚀性能. 170 °C下水热晶化制备的锐钛矿TiO2与450 °C焙烧制备的锐钛矿TiO2的结晶度类似, 但两种TiO2薄膜的表面结构存在明显差异, 水热晶化法制备的TiO2纳米膜在3.5% (w) NaCl溶液中的耐蚀性能优于焙烧法制备的.  相似文献   
40.
合成了以4,4’-二环己基甲烷二异氰酸酯(HMDI)和乙二胺(EDA)为硬段、聚碳酸六亚甲基酯二醇(PHC)为软段的聚酯型聚氨酯脲(PUU),并用聚氧乙烯和肝素(heparin)对其进行了表面改性。通过红外光谱、X射线光电子能谱、接触角等研究了PUU材料的表面结构和性能。实验结果表明,利用室温等离子体方法,成功在PUU...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号