首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   2篇
  国内免费   42篇
化学   54篇
物理学   3篇
  2023年   1篇
  2021年   3篇
  2020年   2篇
  2019年   2篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   8篇
  2010年   4篇
  2009年   12篇
  2008年   3篇
  2007年   8篇
  2004年   4篇
排序方式: 共有57条查询结果,搜索用时 15 毫秒
21.
纳米金催化氢气/氧气共存下丙烯直接环氧化研究进展   总被引:3,自引:3,他引:0  
金以其独特的化学性质,很早就被人们广泛地应用于生产生活的各个领域.但是金历来被认为是化学惰性的金属,相对于其它贵金属,金的催化潜力一直未能引起足够的重视.然而近年来,由于Haruta课题组[1]发现负载在某种金属氧化物上的纳米金催化剂对CO低温氧化不仅具有很高的催化活性,而且还具有良好的抗水性、稳定性和湿度增强效应,致使人们对其催化活性产生了极大兴趣和关注.人们相继开展了金催化剂及其催化反应的研究.  相似文献   
22.
本文采用原位激光诱导发光光谱对Cu/SiO2催化剂和经过NaCl修饰后的Cu-NaCl/SiO2催化剂中Cu物种的价态和所处环境对其影响展开研究。原位表征结果表明:通过改变催化剂的处理气氛,激光诱导发光光谱灵敏地给出了不同价态的Cu物种的电子态信息。出现在562nm处被归属为Cu+-Cu+二聚体的光致发光带由于NaCl的加入位移到574nm,这可能是Na+和Cl-的静电作用引起。  相似文献   
23.
CO氧化不仅具有重要的实用价值,而且在基础研究中被用于考察反应机理及催化剂结构敏感性等一些重要问题,因此,该反应在催化领域中具有重要意义. Pt基催化剂被广泛应用于CO氧化反应.其催化活性取决于催化剂的制备方法.其中,碱金属如Na、K等助剂的添加可有效促进催化活性,红外光谱证据表明,其促进作用在于碱金属的添加可降低CO与表面Pt原子的相互作用.尽管如此,催化剂上反应动力学证据却十分缺乏.反应动力学的研究可以提供一些本证反应信息如反应基元步骤、反应速率表达式以及反应机理等.通过对比不同催化剂之间的反应动力学行为,可以进一步解释碱金属对催化剂结构以及反应行为的影响.因此在本工作中,我们制备了一系列以K为助剂的Pt/Al2O3催化剂,并进行了CO氧化的反应动力学研究,考察了助剂对CO反应级数和反应活化能的影响.结合原位红外光谱表征,进一步揭示了助剂在反应中的作用.通过对比不同Pt和K含量的催化剂上CO氧化反应活性,我们发现, K的添加能促进反应活性,且随着催化剂中K含量的增加,促进程度越明显.例如,0.42K-2Pt/Al2O3上T50温度比对应的2Pt/Al2O3降低了30oC.不同催化剂上CO氧化的反应动力学实验表明,反应速率随着CO的分压的增加而降低;但随着O2分压的增加而增大.幂函数反应速率表达式推导得到的反应级数发现,对于含K的催化剂其CO的反应级数(约为–0.2)明显比不含K的催化剂(约为–0.5)中高,说明K的添加减弱了CO与表面Pt原子之间的吸附能力.但对O2的反应级数影响较小.例如:在0.42K-2.0Pt/Al2O3上反应速率表达式为r =6.55′10–7pco–0.22po20.63;而在2.0Pt/Al2O3上为r =2.56′10–7pco–0.53po20.70.表观反应活化能的计算表明,含K的催化剂上表观反应活化能较低,进一步说明K的添加有利于反应进行.根据反应速率表达式,我们进行了基元步骤的推导,并计算了反应动力学参数.结果发现,与不含K的催化剂相比,含K的催化剂中本征反应速率常数明显增加,而CO吸附平衡常数降低了一半,表明K的存在使CO在Pt表面上的覆盖度降低.我们还通过原位红外光谱对比了催化剂上CO吸附行为的差异.数据表明,与不含K的催化剂相比, K的添加一方面降低了CO在催化剂表面的吸附量(峰面积变小);另一方面显著降低了CO在Pt表面上的脱附温度,说明两者之间的相互作用力减弱.综上所述,通过反应动力学和红外光谱实验,我们认为K助剂与表面Pt原子相互作用后生成了较为稳定的Pt–O–K物种.尽管该物种的具体结构目前还不明确,但我们的实验证据表明,该物种的存在可以有效减弱CO与表面Pt原子之间的相互作用,降低CO的表面覆盖度并有利于O2在Pt表面的竞争吸附,从而降低了表面吸附的CO与O2之间反应的能垒,促进了反应性能.  相似文献   
24.
在Ir/TiH_2催化剂上进行了巴豆醛液相选择性加氢反应,并研究催化剂还原温度对其反应行为的影响.相比于Ir/TiO_2催化剂,相同反应条件下Ir/TiH_2催化剂的活性提高了2倍(80℃时巴豆醛转化率为52%),且巴豆醇选择性大幅度提高(78%).表征结果表明,Ir/TiH_2催化剂表面富含的氧缺位和强的H活化能力是催化剂性能提高的主要原因.此外,Ir/TiH_2催化剂中Ir颗粒尺寸随催化剂还原温度的升高而增大,导致其本征活性降低,表现出明显的尺寸效应.较小的颗粒尺寸有利于巴豆醛分子中C=O键加氢,从而提高了催化剂的反应性能.  相似文献   
25.
巴豆醛是一种重要的α,β-不饱和醛,其选择性加氢常被用作模型反应用以研究催化剂构效关系.近年来,文献报道了众多贵金属基催化剂上巴豆醛选择性加氢的结果.我们主要从贵金属催化剂角度系统地讨论和总结该反应的最新进展.通过比较催化剂的不同反应行为,进一步明确催化剂性质(如催化剂结构、晶面/界面效应、电子效应和几何效应等)与反应性能之间的关系.并尝试总结和讨论当前研究中所存在的不足与前景,为进一步提高目标产物的收率提供思路.  相似文献   
26.
采用炭硬模板法制备了高比表面积Cr2O3-α-AIF3催化剂.该催化剂的合成过程主要包括三步:(1)将一定浓度的蔗糖溶液浸渍到Cr2O3-γ-Al2O3中,然后经过热处理,使得蔗糖分解为炭;(2)将含炭的Cr2O3-γ-Al2O3固体在400℃用HF气体进行完全氟化;(3)在高温下利用燃烧法除去炭硬模板.对所制备的催化剂进行了X射线衍射(XRD),氮气吸脱附曲线,氨气程序升温脱附(NH3-TPD),透射电镜(TEM),扫描电镜(SEM)和X射线能量散射(EDX)技术表征.结果表明,氟化过程对Cr2O3-α-AIF3催化剂比表面积有重要影响,在最佳实验条件下,能够得到比表面积为115 m2·g-1的催化剂.此催化剂对催化裂解二氟乙烷(HFC-152a)制备氟乙烯(VF)的催化活性明显高于直接氟化制备的Cr2O3-α-AIF3催化剂,这是因为高比表面积的Cr2O3-α-AIF3催化剂具有较大的酸量.  相似文献   
27.
采用沉积一沉淀法制备了Pt/Pr_6O_(11)催化剂,应用于巴豆醛气相选择性加氢生成巴豆醇的反应.Pt/Pr_6O_(11)催化剂经700℃还原后,巴豆醇初始选择性可以达到75%以上.H_2-TPR和In situ FTIR结果表明,还原后的Pt/Pr_6O_(11)催化剂中存在低价态的Pr~(3+),在巴豆醛加氢过程中能够给Pt提供电子,增加活化C=0键的能力,从而提高生成巴豆醇的选择性.Raman光谱实验结果表明,反应过程中Pt/Pr_6O_(11)催化剂表面有积炭产生,而积炭是造成催化剂活性和选择性下降的主要原因.  相似文献   
28.
制备了一系列CrOx-Y2O3催化剂用于气相氟化1,1,1-三氟-2-氯乙烷(HCFC-133a)合成1,1,1,2-四氟乙烷(HFC-134a),并考察了Y(OH)3、YCl3和Y(NO3)3前躯体对催化剂性能的影响.XRD和UV-Vis光谱实验结果表明,Y前躯体对催化剂表而Cr物种有影响,其中采用Y(OH)3前躯体的催化剂有利于以高分散的Cr6+形式存在.研究表明CrOx-Y2O3催化剂在预处理和反应过程中,部分高价CrOx可转化为CrF3.催化剂中CrF3含量增加,导致其转化为活性物种的含量相对减少,所以其催化活性下降.  相似文献   
29.
采用共沉淀法制备了一系列不同Pd含量的PdO-CeO2复合氧化物催化剂, 并考察了该催化剂的CO低温氧化反应催化性能. 运用X射线衍射(XRD), 物理吸附(BET), CO化学吸附, 程序升温还原(TPR), 脉冲反应等技术对催化剂进行了表征. XRD结果表明, 焙烧温度从400 ℃升高到800 ℃, 有利于CexPd1-xO2-δ固溶体的形成. 然而焙烧温度升至1000 ℃时, 导致Pd从固溶体中析出. 催化剂的CO氧化活性(TOF)与CexPd1-xO2-δ固溶体的含量存在一定的对应关系. 随着CexPd1-xO2-δ固溶体含量的增加, CO氧化的TOF值大, 可见CexPd1-xO2-δ固溶体的形成对CO氧化活性有着主要的贡献. 在催化剂焙烧温度相同的条件下, 催化剂的CO氧化活性与Pd粒子大小无对应关系. 脉冲反应进一步说明PdOx的CO氧化活性高于金属Pd.  相似文献   
30.
以Sn改性的TS-1分子筛为载体,利用沉积沉淀法制备了金催化剂,用于在氢气氧气共存下丙烯直接环氧化反应,并比较了不同Sn掺杂量对催化剂结构及其催化性能的影响.X射线衍射与红外光谱结果表明,Sn掺杂进入TS-1骨架中.反应活性结果表明,Sn的改性使催化剂上丙烯的转化率由1.6提高到2.5%,环氧丙烷的选择性由87上升到90%,活性的增加可能是由于Sn的掺入引起的配位效应(ligand effect).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号