首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   5篇
  国内免费   47篇
化学   60篇
物理学   18篇
  2023年   2篇
  2019年   5篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   5篇
  2014年   4篇
  2013年   10篇
  2012年   2篇
  2011年   4篇
  2010年   3篇
  2009年   7篇
  2008年   5篇
  2007年   2篇
  2006年   4篇
  2005年   4篇
  2004年   3篇
  2003年   6篇
  2001年   1篇
  2000年   5篇
排序方式: 共有78条查询结果,搜索用时 15 毫秒
21.
以雌酚酮为原料,以取代的苯甲酰作为雌酚酮酚羟基的保护基,乙二醇为雌酚酮羰基的保护基,经过溴代、脱溴和水解等5步反应,通过优化反应路线、反应试剂及反应条件,以65%的高收率制得3-羟基雌甾-1,3,5(10),15-四烯-17-酮.中间体及目标产物的结构经过元素分析、核磁共振波谱(NMR)和电喷雾电离-质谱(ESI-MS)确证.  相似文献   
22.
四嗪类含能化合物因其高能、钝感、高燃速、低压力指数、良好的热安定性等特点被广泛应用于含能材料领域。然而却存在低密度、低热稳定性的问题,为提高四嗪类化合物的这一性能,制备的一系列金属衍生物得到了广泛关注。3,6-双(1-氢-1,2,3,4-四唑-5-氨基)-1,2,4,5-四嗪(BTATz)作为四嗪类高氮含能化合物一种,具有良好的催化性能及应用前景。本文以BTATz钾与硝酸钴在水溶液中反应合成了1,2,4,5-四嗪(s-四嗪)的钴盐。采用元素分析(EA)、傅里叶变换红外光谱分析(FTIR)及电感耦合等离子体质谱(ICP-MS)对其进行了结构表征,推测其化学式为Co(C_4H_2N_(14))·4H_2O。采用差示扫描量热仪(DSC)和热重分析仪(TG/DTG)研究了其热分解行为及主放热反应的动力学方程。计算了自加速分解温度(T_(SADT))、热爆炸临界温度(T_b)、热点火温度(T_(TIT))和绝热至爆时间(t_(TIAD)),其值分别为509.69 K、556.31 K、524.93 K和88.40 s,并以此来评价化合物的热安全性。该金属盐的绝热至爆时间大于相应的Ca盐、Mg盐和Sr盐,放热量高于配体BTATz,有望成为良好的燃烧催化剂。  相似文献   
23.
通过草酸钾(k2ox·H2O)、硝酸镉[Cd(NO3)2·4H2O]和1,10-邻菲咯啉(phen)在甲醇·水溶液中的反应合成了一种双核镉配合物[Cd2(phen)2ox(NO3)2(H2O)2],其结构经单晶X射线衍射表征.配合物属三斜晶系,P(1)空间群,晶胞参数:a=0.67629(14)nm,b=1.0051(...  相似文献   
24.
采用DFT 方法对偶氮四唑胍盐(GZT)等6 种偶氮四唑非金属盐进行了B3LYP/6-31G 水平的几何结构全优化, 计算了分子的最低空轨道能量(ELUMO)、最高占有轨道能量(EHOMO)及原子上的电荷分布等分子结构参数. 研究了偶氮四唑非金属盐的分子结构参数(包括氧平衡)和热分解参数(热分解温度和热分解活化能等)与其撞击感度之间的相关性. 结果表明, 偶氮四唑非金属盐的氧平衡越低, 撞击感度越低; 热分解温度和热分解活化能越低, 撞击感度越高; 取代基团上所带正电荷越大, 撞击感度越低.  相似文献   
25.
对Nd∶YAG固体激光器倍频、三倍频激光输出在空气和水浴环境下刻蚀Si片进行了研究,分析了刻蚀速率和样品表面形貌,得出了在355 nm刻蚀波长下,水浴环境中,刻蚀速率最快,刻槽宽度最小,小于10 μm的实验结论,为工业应用提供参考.  相似文献   
26.
Yb3+:Y2O3透明陶瓷激光器获得5 W连续激光输出   总被引:12,自引:2,他引:10  
用带尾纤输出的激光二极管作为抽运源,采用端面抽运10%Yb^3 :Y2O3多晶透明陶瓷的方式获得了连续激光输出。抽运阈值功率为5.6W,当陶瓷介质吸收的抽运功率为31.11W时,Yb^3 :Y2O3多晶透明陶瓷获得了最大连续激光输出功率5.48W。光—光转换效率为17.6%,斜率效率为25%。同时在激光实验过程中,没有发现饱和现象,因此采用更高功率的激光二极管作为抽运源,陶瓷的激光输出功率会得到进一步提高。这一研究成果表明,多晶透明陶瓷是一种非常有潜力的激光增益介质。  相似文献   
27.
钝感高能炸药1,3,3-三硝基氮杂环丁烷(TNAZ)可由3,3-二硝基氮杂环丁烷(DNAZ)进行合成. 在合成DNAZ的过程中, 得到了中间产物N-叔丁基-3,3-二硝基氮杂环丁烷硝酸盐(TDNAZ·HNO3)和3,3-二硝基氮杂环丁烷盐酸盐(DNAZ·HCl). 培养了二者的单晶, 并通过X射线单晶结构分析法测定了它们的晶体结构. TDNAZ·HNO3属于正交晶系, Pnma空间群, 晶胞参数a=1.2697(3) nm, b=0.8179(2) nm, c=1.1621(3) nm, V=1.2067 nm3, Z=4. DNAZ·HCl属于正交晶系, Cmc21空间群, 晶胞参数a=0.6681(2) nm, b=1.0441(2) nm, c=0.9971(2) nm, V=0.6955 nm3, Z=4. 用密度泛函理论方法对该二种化合物进行了几何优化和频率计算, 获得分子结构、原子上Hirshfeld电荷、原子间Mayer键级和前沿轨道能量及组成. 基于分子和电子结构信息从理论上解释了相关反应机理, 并对两种化合物的热稳定性进行了比较.  相似文献   
28.
3,6-二肼基-1,2,4,5-四嗪的热行为、比热容及绝热至爆时间   总被引:1,自引:0,他引:1  
利用差示扫描量热法(DSC)、热重-微商热重法(TG-DTG)研究了3,6-二肼基-1,2,4,5-四嗪(DHT)的热行为, 其分解过程可分为两个放热的分解过程, 且热分解反应的表观活化能分别为154.8和123.4 kJ·mol-1, 指前因子分别为1016.63和109.48 s-1. DHT热爆炸的临近温度为426.10 K. 同时, 利用微量热法和理论计算方法研究了DHT的比热容, 298.15 K时的标准摩尔比热容为183.61 J·mol-1·K-1. 计算获得了DHT的绝热至爆时间为263.84-297.58 s之间的某一值.  相似文献   
29.
1,3,3-三硝基氮杂环丁烷的热安全性   总被引:3,自引:0,他引:3  
借助不同加热速率(β)的非等温DSC曲线离开基线的初始温度(T0)、onset温度(Te)和峰顶温度(Tp), Kissinger法和Ozawa法求得的热分解反应的表观活化能(Ek和EO)和指前因子(Ak), Hu-Zhao-Gao方程ln βi=ln[A0/(be0 or p0G(α))]+   be0 or p0Tei or pi求得的be0 or p0, Zhao-Hu-Gao方程ln βi=ln[A0/((ae0 or p0+1)G(α))]+(ae0 or p0+1) ln Tei or pi求得的ae0 or p0, 微热量法确定的比热容(Cp), 以及密度(ρ)、热导率(λ)和分解热(Qd, 取爆热之半)数据, Zhang-Hu-Xie-Li公式、Hu-Yang-Liang-Xie公式、Hu-Zhao-Gao公式、Zhao-Hu-Gao公式、Smith方程、Friedman公式和Bruckman-Guillet公式, 计算了TNAZ在β→0时的T0, Te和Tp值(T00, Teo和Tp0)、热爆炸临界温度(Tbe和Tbp)、绝热至爆时间(tTlad)、撞击感度50%落高(H50)和热点起爆临界温度(Tcr), 得到了评价TNAZ热安全性的结果: TSADT=Te0=485.81 K, Tp0=497.38 K, Tbeo=499.50 K, Tbp0=513.45 K, tTlad=8.90 s (n=0), tTlad=8.96 s (n=1), tTlad=9.01 s (n=2), H50=28.88 cm, Tcr=641.46 K (Troom=293.15 K), Tcr=658.89 K (Troom=300 K), 表明: (1) TNAZ对热是稳定的; (2)撞击感度好于环三亚甲基三硝胺(RDX); (3)热点起爆临界温度高于RDX, 而界于1,3,5-三氨基-2,4,6-三硝基苯(TATB)和六硝基茋(HNS)之间.  相似文献   
30.
析氧反应(OER)作为动力学缓慢的四电子多步骤反应过程,限制了电催化水分解制氢的反应速率,降低了电催化水分解制氢的整体效率,以热力学更有利的有机含能材料氧化反应替代OER与析氢反应(HER)耦合,在降低槽压制得氢气的同时能得到高附加值的化工产品.本文建立了一种新的耦合体系,在阳极侧制备含能离子盐[偶氮四唑钾盐(K2AZT)]的同时,阴极侧以碳布负载的二硫化钨纳米片(CC@WS2 NSs)作为HER催化剂促进H2的形成.该体系仅需要1.65 V的槽电压即可达到10 m A/cm2的电流密度,相比于CC@WS2 NSs/CF全解水体系(1.87 V)降低了220 m V.耦合体系在至少15 h内保持平稳运行,表现出优异的稳定性能.通过绿色安全的电化学法制备含能化合物避免了传统有机合成方法高能耗、高风险和高成本等问题,为安全生产含能材料提供了新的合成策略.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号