首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   428篇
  免费   239篇
  国内免费   105篇
化学   113篇
晶体学   78篇
力学   10篇
综合类   13篇
数学   6篇
物理学   552篇
  2024年   7篇
  2023年   26篇
  2022年   24篇
  2021年   23篇
  2020年   11篇
  2019年   16篇
  2018年   15篇
  2017年   20篇
  2016年   28篇
  2015年   29篇
  2014年   54篇
  2013年   41篇
  2012年   42篇
  2011年   41篇
  2010年   46篇
  2009年   50篇
  2008年   39篇
  2007年   44篇
  2006年   47篇
  2005年   35篇
  2004年   25篇
  2003年   11篇
  2002年   22篇
  2001年   15篇
  2000年   11篇
  1999年   3篇
  1998年   11篇
  1997年   8篇
  1996年   4篇
  1995年   5篇
  1994年   2篇
  1993年   5篇
  1992年   4篇
  1991年   2篇
  1989年   2篇
  1988年   1篇
  1984年   2篇
  1983年   1篇
排序方式: 共有772条查询结果,搜索用时 46 毫秒
21.
碳酸盐前驱物制备Y2O3超细粉及透明陶瓷   总被引:14,自引:1,他引:14  
以Y(NO3)3和NH4HCO3为原料,通过向Y(NO3)3溶液中滴加NH4HCO3的方式制备了化学组成为Y2(CO3)3·2H2O的先驱沉淀物。研究了先驱沉淀物煅烧过程中的物相变化。先驱沉淀物1100℃煅烧4h后得到了平均粒径为60nm的无团聚Y2O3超细粉体。所得粉体不添加任何添加剂,在1700℃下真空烧结4h得到了透明Y2O3陶瓷。  相似文献   
22.
低温燃烧法制备Nd:YAG透明激光陶瓷粉体   总被引:2,自引:1,他引:2  
以硝酸盐和柠檬酸为初始原料,用低温燃烧法制备出掺钕钇铝石榴石(Nd:Y3Al5O2,Nd:YAG)多晶超细粉体,并采用XRD,SEM等测试手段对粉体的结构和形貌进行了表征。结果表明,在950oC煅烧2h得到了结晶性能良好的Nd:YAG超细粉体,该粉体分散均匀、粒级分布窄、平均粒度为50nmo上述粉体加入0.5%正硅酸乙酯成型后,采用SPS于1600℃,30MPa下烧结5min后相对密度达98.5%,晶粒尺寸在1μm左右,显微结构均匀,气孔率低。  相似文献   
23.
A transparent this film was prepared by depositing the sol-gel mixture for the synthesis of MCM-41 mesoporous molecular sieve doped with rhodamine 6G(R6G) dye on glass substrates. The film of silica-surfactant-R6G materials, which was identified to possess hexagonally ordered mesostructure,was composed of nanocrystallites about 35 nm in diameter and 1-10μm in thickness. Cleanness of the substrates, concentration of the sol-gel mixture and rate of evaporation of the solvent were the key factors affecting transparency and homogeneity of the film. Moreover,optical change and lack in dye aggregation were observed to the R6G-functionalized MCM-41 thin film in contrast with that in ethanol solution.  相似文献   
24.
王焕华 《物理》2012,41(12):783-788
现代光电子产品和能源技术都大量使用透明导电氧化物(TCO)薄膜.由于太阳能电池、平板显示器、发光二极管、短波长激光器、节能玻璃窗等应用领域日益增长的需求,TCO薄膜获得了越来越广泛的应用.文章总结了TCO薄膜的功能原理、应用需求和当前的研究方向,重点分析了p型TCO薄膜研究所要解决的关键问题(其中包括掺杂非对称性,性能退化与缺陷的生成,结构和变化的关系),指出了p型TCO薄膜制备的关键因素,研究的热点问题和蕴藏的研究机会.  相似文献   
25.
26.
碳纳米管具有优秀的导电性能、 透光性能和十分突出的柔性, 在柔性透明导电薄膜中有着良好的应用前景. 如何制备同时拥有良好导电性能和透光性能的碳纳米管薄膜是这一领域研究的核心问题. 本综述介绍了碳纳米管薄膜的制备方法, 并重点讨论了基于漂浮催化剂化学气相沉积法的碳纳米管薄膜的可控制备. 在生长过程中限制碳纳米管的团聚、 增加碳纳米管的长度、 降低杂质的含量是提高碳纳米管薄膜性能的主要策略.  相似文献   
27.
Graphene has become a research focus in recent years owing to its excellent characteristics, and glass is a commonly used material with high transparency and low cost. Graphene glass combines the excellent properties of both graphene and glass; graphene glass has not only high thermal conductivity, high electrical conductivity, and good surface hydrophobicity but also exhibits superior electrothermal conversion and wide-spectrum high-light-transmittance characteristics. Therefore, the study of graphene glass films is of theoretical value and practical significance. In this study, a high-purity glass-based (JGS1 quartz glass) multilayer graphene film was developed based on an atmospheric-pressure chemical vapor deposition (APCVD) method, and its electrical characteristics, light transmittance, and electrical heating characteristics were experimentally investigated in detail. The results show that graphene glass with different surface resistance values obtained through direct growth on a high-purity quartz glass substrate using the APCVD method, not only has excellent uniformity and quality, but also has considerably flat and high transmittance across the entire visible light region and exhibits excellent heating performance and fast response time. For graphene glass with a surface resistance of 1500 Ω·sq-1, the light transmittance can reach 74%, and the saturation temperature can rise to 185 ℃ by applying a bias voltage of 40 V. In addition, when the resistance value of the graphene glass is 420 Ω·sq-1, the graphene glass reaches a high saturation temperature of 325 ℃ in 40 s, and the corresponding heating rate can exceed 18 ℃·s-1, achieving a significantly higher heating rate than other heating films at the same voltage. Compared with the polyethylene-terephthalate- (PET-) based and silicon-based graphene films obtained by the transfer, graphene glass has a higher saturation temperature, shorter thermal response time, and faster heating rate. Furthermore, graphene glass exhibits better heating cycle stability and longer-term heating stability at a constant voltage. In addition, an experiment using the graphene glass to thermally tune the wavelength of a vertical-cavity surface-emitting laser was conducted and gave good results. The position of the laser peak controlled by the graphene glass was red-shifted by 1.78 nm by applying a voltage of 20 V, and the wavelength tuning efficiency reached 0.059 nm·℃-1. Compared with PET-based and silicon-based graphene films, the actual electrical heating capacity of graphene glass increased by 195%. These experimental findings demonstrate that graphene glass transparent films with excellent electric heating characteristics can be used in various transparent electric heating fields and have relatively wide application prospects.  相似文献   
28.
杨智伟  焦月春  韩小萱  赵建明  贾锁堂 《物理学报》2016,65(10):103201-103201
本文主要研究了调制探测激光场中铯Rydberg 原子阶梯型三能级系统的电磁感应透明(EIT) 效应. 铯原子基态6S1/2, 第一激发态6P3/2 和Rydberg 态形成阶梯型三能级系统, 探测光作用于6S1/2 (F = 4)→6P3/2(F' = 5) 的跃迁, 耦合光在Rydberg 跃迁线6P3/2→49S1/2 附近扫描, 形成Rydberg 原子EIT. 当对探测光频率施加一个几kHz 的调制时, 调制解调后的EIT 信号分裂为两个峰, 双峰间距与调制频率无关,而与调制幅度导致的失谐量大小(频率调制幅度) 成正比, 双峰间隔的一半等于探测光频率调制幅度的λpc = 1.67 倍. 实验结果与理论计算相一致. 本文的研究结果可应用于激光线型和频率抖动的实时监测.  相似文献   
29.
林悠优  李江涛  朱海永  廖小青  段延敏  章健  唐定远 《物理学报》2015,64(20):204204-204204
报道了基于半导体激光端面抽运Nd:YAG的4F3/24I13/2 跃迁的弱谱线多波长激光输出. 实验对比了透明陶瓷与单晶材料的激光输出特性, 表明透明陶瓷和单晶材料荧光谱强度的略微差异, 导致了多波长输出时相同两个波长之间的激光强度比在两种材料中的差异. 基于两种耦合输出镜片, 激光阈值都在2 W左右. 在13.5 W的抽运功率下, 基于Nd:YAG透明陶瓷获得了输出功率4.05 W、强度比1 :2的1338与1356 nm双波长激光和输出功率3.65 W、强度比13 : 1的1356与1414 nm 双波长激光, 斜率效率分别达33.9% 和31.9%.  相似文献   
30.
在论述磁控溅射制备的掺钛氧化锌薄膜研究意义的基础上,介绍了目前国内外有关采用磁控溅射制备的掺钛氧化锌薄膜的研究现状,并展望了掺钛氧化锌薄膜的未来研究方向。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号