首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   2篇
  国内免费   70篇
化学   84篇
物理学   2篇
  2024年   1篇
  2022年   3篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   4篇
  2016年   5篇
  2015年   5篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2009年   5篇
  2008年   3篇
  2006年   3篇
  2005年   10篇
  2004年   5篇
  2003年   5篇
  2002年   4篇
  2001年   5篇
  1996年   5篇
  1995年   1篇
  1994年   1篇
  1993年   4篇
排序方式: 共有86条查询结果,搜索用时 16 毫秒
21.
在相同Rh担载量和P/Rh摩尔比的条件下,使用壳型催化剂制备技术制备了具有不同Rh粒径的锚合膦配体修饰的Rh/SiO_2催化剂,以乙烯氢甲酰化反应作为探针反应考察了催化剂的反应性能.结果表明,Rh粒径直接影响催化剂的催化性能:Rh粒径越小,催化剂活性越高,但诱导期越长.通过H2化学吸附、透射电子显微镜、N_2吸附-脱附等温线、原位红外光谱和固体~(31)P核磁共振技术对催化剂进行了表征,结果表明,随着Rh粒径的减小,活性物种铑膦配合物增多,但有效载体面积上的Rh颗粒浓度降低,使膦需要更多的时间和Rh配位形成配合物,从而导致诱导期增长.  相似文献   
22.
 用红外光谱法考察了Rh-Mn-Li-Ti/SiO2催化剂在CO加氢反应过程中表面吸附物种随压力、温度和H2/CO比的改变而变化的规律. 结果表明,高压有利于提高催化剂表面吸附的CO浓度和活性,高温有利于CO解离; 而高温、高压条件不但促进了CO吸附,而且提高并平衡了CO的解离和插入之间的相对活性,促进了C2含氧化合物的生成. H2/CO比的增大有利于CO在催化剂表面的吸附,从而促进了CO插入,尤其是CO的解离和加氢活性,但是过高的H2/CO比将导致过高的CO解离和加氢活性,引起CO插入活性的削弱而最终导致C2含氧化合物生成活性的下降. 同时,考察了助剂(Mn, Li和Ti)对Rh基催化剂表面吸附物种的影响. 结果表明,助剂的加入可提高C2含氧化合物的生成活性.  相似文献   
23.
研究了催化剂制备方法、Mo含量、预处理条件和反应条件对在无氧条件下HZSM-5负载的Mo基催化剂上甲烷直接芳构化反应的影响,及积炭和烧炭再生对催化剂性能的影响.发现Mo含量为3.5~4%时催化剂活性最高,生成苯的速率高达1.2×10-3mol·g-1·s-1.降低空速和提高反应温度均有利于甲烷的直接芳构化.随着反应的进行,乙烯的选择性不断提高,苯的选择性则不断降低.XPS结果表明,反应后催化剂表面积炭,且研磨法制备的催化剂中Mo6+被还原成不具活性的金属态Mo0.卡宾中间体(Mo=CH2)可能是甲烷芳构化反应的起始物.  相似文献   
24.
研究了P/Kh比对PPh3-Rh/SiO2催化剂上丙烯氢甲酰化反应性能的影响.结果表明,当P/Rh比为15时,丙烯氢甲酰化反应性能最好,丙烯转化率为25.9%,产物丁醛正异比为14,转换频率为241 h-1.PPh3-Rh/SiO2催化剂的固体31P核磁共振结果表明,在合成气气氛下,物理吸附的PPh3能够溢流到Rh/S...  相似文献   
25.
活性炭负载钴基催化剂上合成气制混合醇   总被引:2,自引:0,他引:2  
在两种分别来自椰壳炭和杏核炭的活性炭AC1和AC2上,采用真空浸渍法制备了Co基催化剂15%Co/AC1和15Co%/AC2,并考察了其在CO氢化反应中的催化性能.结果表明,AC1和AC2的孔结构基本相同,但表面含氧官能团的数量和种类不同.含氧官能团影响了催化剂Co物种的形态,从而使催化剂在反应中表现出不同的性能.助剂K和zr的添加改变了15%Co/AC1催化剂的活性和选择性.在3.0 Mpa,495 K,H2/CO(体积比)=2和GHSV=500 h-1反应条件下,15%Co/AC1和15%Co/AC2上C1~C18醇的选择性分别为20.6%和9.6%.在其它条件不变,GHSV=1500 h.反应条件下,15%Co-0.01%K-2%Zr/AC1催化剂上CO转化率和醇选择性分别为28.0%和34.3%,液相产物中醇占60.9%,其中C6~C18高碳醇占液相产物的20.6%.  相似文献   
26.
 考察了不同溶剂中 Pt/WO3/ZrO2 催化剂催化甘油加氢制 1,3-丙二醇的反应性能. 结果表明, 质子溶剂乙醇和水有利于甘油转化为 1,3-丙二醇. 含有乙醇或水的二元混合溶剂表现出明显的溶剂组分协同效应, 使用混合溶剂时 1,3-丙二醇选择性超过使用单一溶剂, 而且混合溶剂的组成对反应性能影响很大.  相似文献   
27.
 在浆态反应釜中研究了铁/活性炭催化剂上费-托合成(Fischer-Tropschsynthesis,FTS)反应产物分布和链增长几率(Anderson-Schulz-Flory(ASF)链增长几率和本征链增长几率).产物分布通常在C1处和C2处偏离ASF分布,呈现C1处偏高而C2处偏低的情况.本征链增长几率的研究结果表明,以活性炭为载体的铁基费-托合成催化剂上存在烯烃的再吸附二次反应,使产物分布偏离ASF分布.铁/活性炭催化剂上同时伴随水煤气变换(watergasshift,WGS)反应.XRD检测到铁/活性炭催化剂上存在FexC和Fe3O4两种物相.  相似文献   
28.
29.
 采用一氧化碳程序升温脱附(CO-TPD)和吸附的一氧化碳加氢程序升温表面反应(TPSR)考察了Fe助剂对Rh基催化剂上CO的脱附行为及吸附CO的加氢行为的影响.CO-TPD实验表明,在Rh/SiO2催化剂上CO有三个脱附峰.在Rh-Mn-Li/SiO2中加入0.05%Fe后,高温脱附CO比Rh/SiO2催化剂上相应的CO量大.增加Fe的负载量,CO的脱附量减少.TPSR实验中,CO加氢反应的主要产物是甲烷.不同组分的催化剂上甲烷的生成温度有如下顺序:Rh/SiO2(482K)<Rh-Mn-Li/SiO2(489K)<Rh-Fe/SiO2(494K)<Rh-Mn-Li-Fe/SiO2(501K).甲烷峰的产生伴随着CO(s)高温脱附峰的消失,说明甲烷是由强吸附的CO加氢生成的.  相似文献   
30.
运用原位FT-IR光谱和TPSR-MS等技术研究了负载Ru催化剂的金属表面状态. 结果表明催化剂中存在二类静态活性中心: (1)体现金属Ru本征特性的S_1中心, (2)金属与载体相互作用而产生的S_2中心. 在吸附CO及其加氢反应过程中, S_1中心上处于边、角、棱位置等配位不饱和的金属Ru原子或原子簇经CO剥蚀而产生的动态S_3活性中心. CO在S_1中心上以Ru~0—CO线式态吸附的, 其IR谱带位于1980~2060 cm~(-1)之间. Ru~0—CO在H_2流中进行程序升温加氢反应的TPSR-MS图上出现450 K左右的低温甲烷峰. 焙烧温度升高, 则在TPSR-MS谱图上出现两个甲烷峰, 600±50 K的高温甲烷峰归属为S_2中心上以Ru~(δ+)-CO线式态吸附CO加氢所致. IR谱图中的2075±50 cm~(-1)峰代表Ru~(δ+)-CO. IR谱中2135±5和2075±5 cm~(-1)这对峰的出现反映了S_3中心的形成.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号