首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   302篇
  免费   63篇
  国内免费   118篇
化学   407篇
晶体学   2篇
力学   23篇
综合类   9篇
数学   6篇
物理学   36篇
  2024年   1篇
  2023年   17篇
  2022年   17篇
  2021年   39篇
  2020年   41篇
  2019年   36篇
  2018年   27篇
  2017年   19篇
  2016年   26篇
  2015年   18篇
  2014年   29篇
  2013年   38篇
  2012年   21篇
  2011年   8篇
  2010年   14篇
  2009年   9篇
  2008年   8篇
  2007年   7篇
  2006年   10篇
  2005年   5篇
  2004年   10篇
  2003年   7篇
  2002年   5篇
  2001年   1篇
  2000年   3篇
  1999年   4篇
  1998年   9篇
  1997年   7篇
  1996年   9篇
  1995年   5篇
  1994年   11篇
  1993年   4篇
  1992年   4篇
  1991年   4篇
  1990年   5篇
  1989年   1篇
  1986年   2篇
  1985年   1篇
  1982年   1篇
排序方式: 共有483条查询结果,搜索用时 31 毫秒
21.
22.
The corrosion inhibition of ammonium heltamolybdate (AH) and calcium gluconate (CG) for AA6061 alloy in 3% NaCl solution was investigated by the electrochemical measurements. It indicates that AH inhibits the corrosion of AA6061 alloy and acts as an anodic inhibitor. Maximum inhibition efficiency reaches 74.3% at the concentration of 1 × 10?4 mol.l?1 AH. The results of the electrochemical studies reveal AH is physically adsorbed on the AA6061 alloy surface and the adsorption follows Langmuir isotherm. The combination of AH and CG enhances the inhibition efficiency to 95.9%. The enhanced inhibition is attributed to the promotion of AH adsorption by CG. The mixture of AH and CG is a mixed‐type inhibitor and renders the corrosion potential to more positive values. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
23.
Developing the low-cost and efficient single-atom catalysts (SACs) for nitrogen reduction reaction (NRR) is of great importance while remains as a great challenge. The catalytic activity, selectivity and durability are all fundamentally related to the elaborate coordination environment of SACs. Using first-principles calculations, we investigated the SACs with single transition metal (TM) atom supported on defective boron carbide nitride nanotubes (BCNTs) as NRR electrocatalysts. Our results suggest that boron-vacancy defects on BCNTs can strongly immobilize TM atoms with large enough binding energy and high thermal/structural stability. Importantly, the synergistic effect of boron nitride (BN) and carbon domains comes up with the modifications of the charge polarization of single-TM-atom active site and the electronic properties of material, which has been proven to be the essential key to promote N2 adsorption, activation, and reduction. Specifically, six SACs (namely V, Mn, Fe, Mo, Ru, and W atoms embedded into defective BCNTs) can be used as promising candidates for NRR electrocatalysts as their NRR activity is higher than the state-of-the art Ru(0001) catalyst. In particular, single Mo atom supported on defective BCNTs with large tube diameter possesses the highest NRR activity while suppressing the competitive hydrogen evolution reaction, with a low limiting potential of −0.62 V via associative distal path. This work suggests new opportunities for driving NH3 production by carbon-based single-atom electrocatalysts under ambient conditions.  相似文献   
24.
This article describes a simple method for the generation of multicomponent gradient surfaces on self‐assembled monolayers (SAMs) on gold in a precise and predictable manner, by harnessing a chemical reaction on the monolayer, and their applications. A quinone derivative on a monolayer was converted to an amine through spontaneous intramolecular cyclization following first‐order reaction kinetics. An amine gradient on the surface on a scale of centimeters was realized by modulating the exposure time of the quinone‐presenting monolayer to the chemical reagent. The resulting amine was used as a chemical handle to attach various molecules to the monolayer with formation of multicomponent gradient surfaces. The effectiveness of this strategy was verified by cyclic voltammetry (CV), matrix assisted laser desorption/ionization time‐of‐flight (MALDI‐TOF) mass spectrometry (MS), MS imaging, and contact‐angle measurements. As a practical application, cell adhesion was investigated on RGD/PHSRN peptide/peptide gradient surfaces. Peptide PHSRN was found to synergistically enhance cell adhesion at the position where these two ligands are presented in equal amounts, while these peptide ligands were competitively involved in cell adhesion at other positions. This strategy of generating a gradient may be further expandable to the development of functional gradient surfaces of various molecules and materials, such as DNA, proteins, growth factors, and nanoparticles, and could therefore be useful in many fields of research and practical applications.  相似文献   
25.
通过水热法合成具有协同机制的三元复合材料Bi2Fe4O9/g-C3N4/UiO-66,研究表明三元复合光催化剂的催化活性要高于二元材料和纯材料。这主要是由于Bi2Fe4O9更易于和g-C3N4结合形成稳定的Z-scheme异质结结构,使三元复合材料增强了可见光响应能力,提高了电子-空穴分离能力,增强了空穴和电子的氧化还原能力。  相似文献   
26.
热电材料作为一种新型的清洁能源材料,能够直接实现热能和电能之间相互转换,有望为提高能源的利用率、缓解环境污染问题提供一种综合协调的选择,因此在能源危机越来越严重的21世纪,热电材料的研究引起了各国研究者的广泛兴趣。然而,电热输运的协同调制一直是一个历史性的难题。硫属化合物半导体作为最重要的一类热电材料,近年来其电热输运性质的协同调控受到了广泛的关注。本文综述了硫属化合物半导体热电材料在电热输运协同调控方面所取得的最新研究进展,分析了其电热输运协同调控及热电性能优化的内在物理机制,并展望这些新的调控策略在热电材料发展的应用前景。  相似文献   
27.
本文采用水热法,将MIL-101负载到预处理过的P25表面,制得MIL-101/P25复合光催化材料,通过X射线衍射(XRD)、傅里叶变换红外(FTIR)、低温N2物理吸附-脱附(BET)、热重(TG)、场发射透射电镜(FETEM)和光致发光光谱(PL)等对催化剂进行结构表征,同时考察MIL-101及复合材料的稳定性,并且提出协同因子指标来定量评价复合带来的协同效应。结果表明MIL-101呈片状,与P25部分结合。复合后,MIL-101的稳定性得到提高。在适当的配比下,复合具有协同效应,当Cr(NO33·9H2O与P25的物质的量之比为1:1时,复合材料对罗丹明B的可见光催化活性最高,协同因子达到1.64。复合材料对无色有机污染物水杨酸同样表现出良好的光催化效果。  相似文献   
28.
The rapid spread of the new Coronavirus Disease 2019 (COVID-19) has actually become the newest challenge for the healthcare system since, to date, there is not an effective treatment. Among all drugs tested, Hydroxychloroquine (HCQ) has attracted significant attention. This systematic review aims to analyze preclinical and clinical studies on HCQ potential use in viral infection and chronic diseases. A systematic search of Scopus and PubMed databases was performed to identify clinical and preclinical studies on this argument; 2463 papers were identified and 133 studies were included. Regarding HCQ activity against COVID-19, it was noticed that despite the first data were promising, the latest outcomes highlighted the ineffectiveness of HCQ in the treatment of viral infection. Several trials have seen that HCQ administration did not improve severe illness and did not prevent the infection outbreak after virus exposure. By contrast, HCQ arises as a first-line treatment in managing autoimmune diseases such as rheumatoid arthritis, lupus erythematosus, and Sjögren syndrome. It also improves glucose and lipid homeostasis and reveals significant antibacterial activity.  相似文献   
29.
Two‐dimensional (2D) nanomaterials are currently explored as novel photothermal agents because of their ultrathin structure, high specific surface area, and unique optoelectronic properties. In addition to single photothermal therapy (PTT), 2D nanomaterials have demonstrated significant potential in PTT‐based synergistic therapies. In this Minireview, we summarize the recent progress in 2D nanomaterials for enhanced photothermal cancer therapy over the last five years. Their unique optical properties, typical synthesis methods, and surface modification are also covered. Emphasis is placed on their PTT and PTT‐synergized chemotherapy, photodynamic therapy, and immunotherapy. The major challenges of 2D photothermal agents are addressed and the promising prospects are also presented.  相似文献   
30.
Photodynamic therapy (PDT) has long been shown to be a powerful therapeutic modality for cancer. However, PDT is undiversified and has become stereotyped in recent years. Exploration of distinctive PDT methods is thus highly in demand but remains a severe challenge. Herein, an unprecedented 1+1+1>3 synergistic strategy is proposed and validated for the first time. Three homologous luminogens with aggregation‐induced emission (AIE) characteristics were rationally designed based on a simple backbone. Through slight structural tuning, these far‐red/near‐infrared AIE luminogens are capable of specifically anchoring to mitochondria, cell membrane, and lysosome, and effectively generating reactive oxygen species (ROS). Notably, biological studies demonstrated combined usage of three AIE photosensitizers gives multiple ROS sources simultaneously derived from several organelles, which gives superior therapeutic effect than that from a single organelle at the same photosensitizers concentration. This strategy is conceptually and operationally simple, providing an innovative approach and renewed awareness of improving therapeutic effect through three‐pronged PDT.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号