首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2566篇
  免费   241篇
  国内免费   269篇
化学   2027篇
晶体学   38篇
力学   459篇
综合类   3篇
数学   97篇
物理学   452篇
  2024年   2篇
  2023年   28篇
  2022年   41篇
  2021年   67篇
  2020年   135篇
  2019年   89篇
  2018年   92篇
  2017年   130篇
  2016年   162篇
  2015年   120篇
  2014年   132篇
  2013年   270篇
  2012年   128篇
  2011年   150篇
  2010年   138篇
  2009年   167篇
  2008年   148篇
  2007年   160篇
  2006年   167篇
  2005年   137篇
  2004年   120篇
  2003年   89篇
  2002年   64篇
  2001年   52篇
  2000年   42篇
  1999年   42篇
  1998年   36篇
  1997年   28篇
  1996年   25篇
  1995年   16篇
  1994年   29篇
  1993年   14篇
  1992年   13篇
  1991年   10篇
  1990年   9篇
  1989年   4篇
  1988年   8篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1982年   2篇
  1981年   1篇
  1957年   2篇
排序方式: 共有3076条查询结果,搜索用时 31 毫秒
131.
The fully biodegradable polymer blends remain challenges for the application due to their undesirable comprehensive performance.Herein,remarkable combination of superior mechanical performance,bacterial resistance,and controllable degradability is realized in the biodegradable poly(L-lactide)/poly(butylene succinate) (PLLA/PBSU) blends by stabilizing the epoxide group modified titanium dioxide nanoparticles (m-TiO2) at the PLLA-PBSU interface through reactive blending.The m-TiO2 can not only act as interfacial compatibilizer but also play the role of photodegradation catalyst:on the one hand,binary grafted nanoparticles were in situ formed and stabilized at the interface to enhance the compatibility between polymer phases.As a consequence,the mechanical properties of the blend,such as the elongation at break,notched impact strength and tensile yield strength,were simultaneously improved.On the other hand,antibacterial and photocatalytic degradation performance of the composite films was synergistically improved,it was found that the m-TiO2 incorporated PLLA/PBSU films exhibit more effective antibacterial activity than the neat PLLA/PBSU films.Moreover,the analysis of photodegradable properties revealed that that m-TiO2 nanoparticles could act as a photocatalyst to accelerate the photodegradation rate of polymers.This study paves a new strategy to fabricate advanced PLLA/PBSU blend materials with excellent mechanical performance,antibacterial and photocatalytic degradation performance,which enables the potential utilization of fully degradable polymers.  相似文献   
132.
Developing an effective method for improving the reproducibility of positive temperature coefficient(PTC) effect is of great significance for large-scale application of polymer based PTC composites, owing to its contribution to the security and reliability. Herein, we developed a carbon black(CB)/high density polyethylene(HDPE)/poly(vinylidene fluoride)(PVDF) composite with outstanding PTC reproducibility, by incorporating 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide([OMIm][NTf_2]) into the composite. After multiple repeated temperature cycles, the PTC performance of as-prepared material keeps almost unchanged and the varition of resistance at room temperature is less than 7%. Our studies revealed that [OMIm][NTf2] contributes to the improvement of PTC reproducibility in two ways:(i)it acts as an efficient plasticizer for refining the co-continuous phase morphology of HDPE/PVDE blends;(ii) it inhibits the crystallization of PVDF through the dilution effect, leading to more overlaps of the volume shrinkage process of HDPE and PVDF melt which results in the decrease of interface gap between HDPE and PVDF. This study demonstrated that ionic liquids as the multifunctional agents have great potential for improving the reproducibility in the application of the binary polymer based PTC composites.  相似文献   
133.
General-purpose plastics with high strength and toughness have been in great demand for structural engineering applications. To achieve the reinforcement and broaden the application scope of high-density polyethylene(HDPE), multi-flow vibration injection molding(MFVIM) and ultrahigh molecular weight polyethylene(UHMWPE) are synergistically employed in this work. Herein, the MFVIM has better shear layer control ability and higher fabrication advantage for complex parts than other analogous novel injection molding technologies reported.The reinforcing effect of various filling times and UHMWPE contents as well as the corresponding microstructure evolution are investigated.When 5 wt% UHMWPE is added, MFVIM process with six flow times thickens the shear layer to the whole thickness. The tensile strength and modulus increase to 2.14 and 1.39 times, respectively, compared to neat HDPE on the premise of remaining 70% impact strength. Structural characterizations indicate that the enhancement is attributed to the improvement of shish-kebab content and lamellae compactness, as well as related to the corresponding size distributions of undissolved UHMWPE particles. This novel injection molding technology with great industrial prospects provides a facile and effective strategy to broaden the engineering applications of HDPE materials. Besides, excessive UHMWPE may impair the synergistic enhancement effect, which is also reasonably explained.  相似文献   
134.
Titanium-based metal composites (TMCs) are showing great potential to replace existing traditional materials in aerospace, automotive, and other high temperature engineering applications. This is due to their excellent mechanical, thermal, and physical properties and improved strength to weight ratio. Weight savings in the aerospace industry results in higher efficiency. Carbon nanotubes (CNTs), because of their low density and high Young's modulus, are considered to be an excellent reinforcement for metal matrix composites (MMCs). In the last 20 years extensive research has been carried out to investigate the combination of carbon nanotubes with aluminum, nickel, copper, magnesium, and other metal matrices. The production techniques such as mechanical alloying through powder metallurgy routes and their effects on the mechanical properties of CNT reinforced TMCs are reviewed in this article. The role of the volume fraction of carbon nanotubes and their dispersion into the metal matrix are highlighted. Governing equations to predict the mechanical and tribological properties of CNT reinforced titanium matrix composites are deduced. With the help of this initial prediction of properties, the optimal processing parameters can be optimized. Successful development of CNT reinforced TMCs would result in better wear and mechanical behavior and enhance their ability to withstand high temperature and structural loading environments.  相似文献   
135.
In this work, oil palm empty fruit bunch (EFB) and jute fibers were treated with 2-hydroxy ethyl acrylate (2-HEA) to improve interfacial bonding of oil palm EFB and jute fibers with epoxy matrix. Hybrid composites were fabricated by incorporation of modified oil palm EFB and jute fibers into an epoxy matrix by the hand lay-up technique. Mechanical (flexural and impact) and morphological properties of modified hybrid composites were measured. Results indicated that flexural and impact properties of modified fiber–reinforced hybrid composites improved as compared to untreated hybrid composites due to better fiber/matrix interfacial bonding, which was confirmed by scanning electron microscopy. We confirmed that treated oil palm/jute hybrid composite may be fabricated by advanced techniques such as resin transfer molding, extrusion, and injection molding for industrial applications in the automotive sector.  相似文献   
136.
A novel α‐zirconium phosphate/polyaniline (α‐ZrP/PANI) hybrid film used as K+ ion sensor was fabricated on carbon paper by electrochemical method. Mechanisms of film formation and detection of K+ ions were also proposed. The exfoliated α‐ZrP was mixed with PANI and deposited on carbon paper. The resultant α‐ZrP/PANI film exhibited a good current response to K+ ion with different concentrations. It also showed a wide logarithmic linear response in detecting K+ ions in the ranges of 10?8–10?4 M and 10?4–10?2 M, respectively. The results can be attributed to the synergetic effect of α‐ZrP and PANI.  相似文献   
137.
In this study, a novel non‐enzymatic hydrogen peroxide (H2O2) sensor was fabricated based on gold nanoparticles/carbon nanotube/self‐doped polyaniline (AuNPs/CNTs/SPAN) hollow spheres modified glassy carbon electrode (GCE). SPAN was in‐site polymerized on the surface of SiO2 template, then AuNPs and CNTs were decorated by electrostatic absorption via poly(diallyldimethylammonium chloride). After the SiO2 cores were removed, hollow AuNPs/CNTs/SPAN spheres were obtained and characterized by transmission electron microscopy (TEM), field‐emission scanning electron microscopy (FESEM) and Fourier transform infrared spectroscopy (FTIR). The electrochemical catalytic performance of the hollow AuNPs/CNTs/SPAN/GCE for H2O2 detection was evaluated by cyclic voltammetry (CV) and chronoamperometry. Using chronoamperometric method at a constant potential of ?0.1 V (vs. SCE), the H2O2 sensor displays two linear ranges: one from 5 µM to 0.225 mM with a sensitivity of 499.82 µA mM?1 cm?2; another from 0.225 mM to 8.825 mM with a sensitivity of 152.29 µA mM?1 cm?2. The detection limit was estimated as 0.4 µM (signal‐to‐noise ratio of 3). The hollow AuNPs/CNTs/SPAN/GCE also demonstrated excellent stability and selectivity against interferences from other electroactive species. The sensor was further applied to determine H2O2 in disinfectant real samples.  相似文献   
138.
A well‐known limitation in the fabrication of metal‐graphene composite has been the use of surfactants that strongly adsorb on the surface and reduce the performance of the catalyst. We demonstrate here a novel one‐pot synthesis of gold nanoparticles by laser ablation of gold strip and in‐situ decoration on graphene substrate. Not only the impregnation of nanoparticles was linker free, but also the synthesis by itself was surfactant‐free. The composite materials were well characterized morphologically and functionally using electron microscopy, X‐ray and electron diffraction, Raman spectroscopy, Zeta potential, electrochemical measurements and UV‐Visible spectroscopic techniques. This linker‐free gold‐graphene based composite has been employed for catalytic applications pertaining to electrooxidation. We have explored the use of this composite as a binder‐free electrode in electrocatalytic oxidation of methanol and ethanol in alkaline medium. Additionally, the onset potential for ethanol oxidation was found to be more negative, ?100 mV, an indication of its promising application in direct ethanol fuel cells.  相似文献   
139.
A sustainable procedure for recycling powdered rubber coming from scrap tires (ground tire rubber [GTR]) is proposed as based on the dispersion in polyketone (PK) matrix, obtained in situ by CO/ethylene copolymerization. Three types of catalysts are used operative in solvents of different polarities. The catalyst productivity and the hybrids morphology are evaluated and optimized to final composites features. The obtained products are characterized by scanning electron microscopy, atomic force microscopy, and solvent extractions in order to investigate the occurrence and the extent of interactions between PK macromolecular chains and the GTR components; and their effects on the final properties were tested by differential scanning calorimetry, thermogravimetric analysis, and rheological measurements. For comparison purpose, a composite with GTR included into the matrix through blending is prepared. The results evidenced the key role exerted by the catalyst that, when operative in apolar solvent (able to swell the rubber phase), provides composites with good interfacial adhesion and breaking up of the particles with beneficial effects on final properties particularly thermal features and processability. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
140.
This paper outlines the synthesis and characterization of O‐allyl aralkyl phenolic (O‐allyl Xylok, OAX) resins having low melt viscosity and its Alder‐ene blends with 2, 2′‐bis 4‐[(4′‐maleimido phenoxy) phenyl] propane. The blends manifested a three‐stage curing pattern that converged to a two‐stage pattern on enhancing the maleimide content. The polymerization kinetics of typical allyl and maleimide rich resin systems showed apparent activation energy increasing and pre‐exponential factor decreasing from ene to the Diels–Alder step. Increased allyl content improved mechanical and impact properties of the composites at ambient temperature, although it diminished the retention of interlaminar shear strength at elevated temperature. Increased maleimide content of the resin was conducive for the higher rigidity for the composite and its retention at elevated temperature. A substantial increase in Tg (from 153°C to 280°C) and thermal stability was observed with an increase in maleimide content. High allyl content resulted in improved mechanical properties thanks to better resin–reinforcement interaction as revealed from morphological analysis. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号