首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1564篇
  免费   772篇
  国内免费   632篇
化学   1633篇
晶体学   173篇
力学   5篇
综合类   12篇
数学   2篇
物理学   1143篇
  2024年   17篇
  2023年   51篇
  2022年   115篇
  2021年   137篇
  2020年   149篇
  2019年   121篇
  2018年   99篇
  2017年   115篇
  2016年   153篇
  2015年   139篇
  2014年   185篇
  2013年   244篇
  2012年   193篇
  2011年   173篇
  2010年   144篇
  2009年   135篇
  2008年   118篇
  2007年   123篇
  2006年   100篇
  2005年   79篇
  2004年   65篇
  2003年   56篇
  2002年   35篇
  2001年   48篇
  2000年   44篇
  1999年   20篇
  1998年   20篇
  1997年   17篇
  1996年   10篇
  1995年   5篇
  1994年   17篇
  1993年   11篇
  1992年   8篇
  1991年   3篇
  1990年   6篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1959年   1篇
排序方式: 共有2968条查询结果,搜索用时 218 毫秒
101.
Chloramphenicol (CAP) is a veterinary antibiotic that has been banned due to its severe side effects in humans. Through the application of manure, veterinary antibiotics can enter the soil, where they can be taken up by crops and vegetables and pose a potential health hazard to humans. Thus, it is highly desirable to develop a rapid and sensitive tool for on-site detection of CAP to ensure food safety and to control the abuse of antibiotics. To this end, nitrogen-doped graphene quantum dots (N-GQDs) were successfully prepared via microwave-assisted synthesis using citric acid and urea as carbon and nitrogen sources, respectively. Analytical results suggested that the interaction between N-GQDs and CAP could occurs via π-π stacking, which quenched N-GQD fluorescence. CAP spiked into chicken feed could be rapidly extracted with ethanol and quantified based on N-GQD fluorescence quenching without further separation. This method showed good recovery (97–102.6%), a low detection limit (1.8 ppm), and was not affected by interference from florfenicol, and thiamphenicol, legal substitute antibiotics. This method has excellent potential for determination of CAP in livestock feed and soil.  相似文献   
102.
本文采用共沉淀法合成了Ti:Al2O3纳米粉体.利用热重/差热(TG/DTA)/X射线衍射(XRD)/红外光谱(FTIR)/扫描电镜(SEM)以及能谱(EDS)等分析方法对合成的Ti:Al2O3纳米粉体进行了表征.结果分析表明:前驱体在1200℃下,保温1h可以得到纯的α-Al2O3晶相;粉体的粒径均匀、分散性好,平均粒径在25~50 nm之间.  相似文献   
103.
稀土Ce掺杂对ZnO结构和光催化性能的影响   总被引:3,自引:0,他引:3  
采用共沉淀-焙烧法合成了一系列不同含量的稀土Ce掺杂的ZnO光催化剂. 利用傅里叶变换红外(FT-IR)光谱、粉末X射线衍射(XRD)、扫描电镜(SEM)、紫外-可见(UV-Vis)光谱、光致发光(PL)谱等技术对所制备的光催化剂进行了系列表征. 以酸性橙II脱色降解为模型反应, 考察了掺杂不同含量的铈及不同焙烧温度对ZnO的物理结构和光催化脱色性能的影响. 结果表明: 掺入质量分数(w)为2%的铈可以明显改善氧化锌表面状态, 有利于产生更多的表面羟基; 同时可以抑制光生电子与光生空穴(e-/h+)的复合, 显著提高光催化脱色活性和光催化稳定性; 焙烧温度对光催化剂的晶体结构、表面性能和光催化活性产生较大影响, 500 °C的焙烧处理使样品的结晶度较高, 同时催化剂颗粒粒径较细, 表面具有丰富的羟基. 但过高的焙烧温度(600-800 °C)将导致催化剂的物理结构发生恶化, 降低光催化性能.  相似文献   
104.
The incorporation of impurity ions or doping is a promising method for controlling the electronic and optical properties and the structural stability of halide perovskite nanocrystals (NCs). Herein, we establish relationships between rare-earth ions doping and intrinsic emission of lead-free double perovskite Cs2AgInCl6 NCs to impart and tune the optical performances in the visible light region. Tb3+ ions were incorporated into Cs2AgInCl6 NCs and occupied In3+ sites as verified by both crystallographic analyses and first-principles calculations. Trace amounts of Bi doping endowed the characteristic emission (5D47F6-3) of Tb3+ ions with a new excitation peak at 368 nm rather than the single characteristic excitation at 290 nm of Tb3+. By controlling Tb3+ ions concentration, the emission colors of Bi-doped Cs2Ag(In1−xTbx)Cl6 NCs could be continuously tuned from green to orange, through the efficient energy-transfer channel from self-trapped excitons to Tb3+ ions. Our study provides the salient features of the material design of lead-free perovskite NCs and to expand their luminescence applications.  相似文献   
105.
All-inorganic zero-dimensional (0D) metal halides have recently received increasing attention due to their excellent photoluminescence (PL) performance and high stability. Herein, we present the successful doping of copper(I) into 0D Cs2ZnBr4. The incorporating of Cu+ cations enables the originally weakly luminescent Cs2ZnBr4 to exhibit an efficient blue emission centered at around 465 nm, with a high photoluminescence quantum yield (PLQY) of 65.3 %. Detailed spectral characterizations, including ultrafast transient absorption (TA) techniques, were carried out to investigate the effect of Cu+ dopants and the origin of blue emission in Cs2ZnBr4:Cu. To further study the role of the A-site cation and halogen, A2ZnCl4:Cu (A=Cs, Rb) were also synthesized and found to generate intense sky-blue emission (PLQY≈73.1 %). This work represents an effective strategy for the development of environmentally friendly, low-cost and high-efficiency blue-emitting 0D all-inorganic metal halides.  相似文献   
106.
The development of ultrastable carbon materials for potassium storage poses key limitations caused by the huge volume variation and sluggish kinetics. Nitrogen-enriched porous carbons have recently emerged as promising candidates for this application; however, rational control over nitrogen doping is needed to further suppress the long-term capacity fading. Here we propose a strategy based on pyrolysis–etching of a pyridine-coordinated polymer for deliberate manipulation of edge-nitrogen doping and specific spatial distribution in amorphous high-surface-area carbons; the obtained material shows an edge-nitrogen content of up to 9.34 at %, richer N distribution inside the material, and high surface area of 616 m2 g−1 under a cost-effective low-temperature carbonization. The optimized carbon delivers unprecedented K-storage stability over 6000 cycles with negligible capacity decay (252 mA h g−1 after 4 months at 1 A g−1), rarely reported for potassium storage.  相似文献   
107.
Hybridizing graphene and molecules possess a high potential for developing materials for new applications. However, new methods to characterize such hybrids must be developed. Herein, the wet-chemical non-covalent functionalization of graphene with cationic π-systems is presented and the interaction between graphene and the molecules is characterized in detail. A series of tricationic benzimidazolium salts with various steric demand and counterions was synthesized, characterized and used for the fabrication of graphene hybrids. Subsequently, the doping effects were studied. The molecules are adsorbed onto graphene and studied by Raman spectroscopy, XPS as well as ToF-SIMS. The charged π-systems show a p-doping effect on the underlying graphene. Consequently, the tricationic molecules are reduced through a partial electron transfer process from graphene, a process which is accompanied by the loss of counterions. DFT calculations support this hypothesis and the strong p-doping could be confirmed in fabricated monolayer graphene/hybrid FET devices. The results are the basis to develop sensor applications, which are based on analyte/molecule interactions and effects on doping.  相似文献   
108.
Cobalt-doped zinc oxide single crystals with the shape of hexagonal platelets were synthesized by thermohydrolysis of zinc acetate, cobalt acetate, and hexamethylenetetramine (HMTA) in mixtures of ethanol and water. The mineralization proceeds by a low-temperature dissolution–reprecipitation process from the liquid phase by the formation of basic cobalt zinc salts as intermediates. The crystal shape as well as twin formation of the resulting oxide phase can be influenced by careful choice of the solvent mixture and the amount of doping. An understanding of the course of the reaction was achieved by comprehensive employment of analytical techniques (i.e., SEM, XRD, IR) including an in-depth HRTEM study of precipitates from various reaction stages. In addition, EPR as well as UV/Vis spectroscopic measurements provide information about the insertion of the cobalt dopant into the zincite lattice. The Langmuir–Blodgett (LB) technique is shown to be suitable for depositing coatings of the platelets on glass substrates functionalized with polyelectrolyte multilayers and hence is applied for the formation of monolayers containing domains with ordered tessellation. No major differences are found between deposits on substrates with anionic or cationic surface modification. The adherence to the substrates is sufficient to determine the absolute orientation of the deposited polar single crystals by piezoresponse force microscopy (PFM) and Kelvin probe force microscopy (KPFM) studies.  相似文献   
109.
Direct methanol fuel cells (DMFCs), as one of the important energy conversion devices, are of great interest in the fields of energy, catalysis and materials. However, the application of DMFCs is presently challenged because of the limited activity and durability of cathode catalysts as well as the poisoning issues caused by methanol permeation to the cathode during operation. Herein, we report a new class of Rh-doped PdCu nanoparticles (NPs) with ordered intermetallic structure for enhancing the activity and durability of the cathode for oxygen reduction reaction (ORR) and achieving superior methanol tolerance. The disordered Rh-doped PdCu NPs can be prepared via a simple wet-chemical method, followed by annealing to convert it to ordered phases. The results of transmission electron microscopy (TEM), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), power X-ray diffraction (PXRD) analysis and high resolution TEM (HRTEM) successfully demonstrate the formation of near-spherical NPs with an average size of 6.5 ± 0.5 nm and the conversion of the phase structure. The complete phase transition temperatures of Rh-doped PdCu NPs and PdCu are 500 and 400 ℃, respectively. The molar ratio of Rh/Pd/Cu in the as-synthesized Rh-doped PdCu NPs is 5/48/47. Benefitting from Rh doping and the presence of the ordered intermetallic structure, the Rh-doped PdCu intermetallic electrocatalyst achieves the maximum ORR mass activity of 0.96 A·mg-1 at 0.9 V versus reversible hydrogen electrode (RHE) under alkaline conditions—a 7.4-fold enhancement compared to the commercial Pt/C catalyst. For different electrocatalysts, the ORR activities follow the sequence, ordered Rh-doped PdCu intermetallics > ordered PdCu intermetallics > disordered Rh-doped PdCu NPs > disordered PdCu NPs > commercial Pt/C catalyst. In addition, the distinct structure endows the Rh-doped PdCu intermetallics with highly stable ORR durability with unaltered half-wave potential (E1/2) and mass activity after continuous 20000 cycles, which are higher than those of other electrocatalysts. Furthermore, the E1/2 of the Rh-doped PdCu intermetallics decreases by only 5 mV after adding 0.5 mol·L-1 methanol to the electrolyte, while the commercial Pt/C catalyst negatively shifts by 235 mV and a distinct oxidation peak can be observed. The results indicate that the ORR activity of the Rh-doped PdCu intermetallic electrocatalyst can be well maintained even in the presence of poisoning environment. Our results have demonstrated that Rh-doped PdCu NPs with ordered intermetallic structures is a potential electrocatalyst toward the next-generation high-performance DMFCs.  相似文献   
110.
金兴智  邵怡亮  郑毅  张婷 《分子催化》2020,34(6):559-568
钛酸锶(SrTiO3)光催化剂是一种钙钛矿型三元氧化物,具有较强的氧化还原能力、良好的物理化学稳定性及环境友好等特点,在光催化各领域得到了广泛应用,如制氢/降解/光电催化等。SrTiO3对太阳光的利用率较低,且其本征光催化活性受光生载流子分离效率等因素限制,阻碍了实际应用。针对以上问题,将围绕国内外SrTiO3改性研究的现状进行综述,主要从掺杂、负载、复合改性等方面进行陈述。最后,对高效稳定SrTiO3光催化剂的未来发展趋势进行展望。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号