首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   0篇
  国内免费   37篇
化学   37篇
  2022年   1篇
  2016年   1篇
  2014年   4篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   3篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   4篇
  2004年   3篇
  2003年   3篇
  2002年   4篇
  2001年   2篇
  2000年   1篇
排序方式: 共有37条查询结果,搜索用时 15 毫秒
11.
聚醚醚酮(PEEK)因具有优异的机械性能、耐热性、耐化学腐蚀性等优点而广泛应用于航空航天、电子器件、机械仪表等领域.具有刚性结构的聚醚醚酮有极好的耐溶剂性,不溶于一般的有机溶剂,并且需在较高的温度下进行加工.近20年来,人们不断开发性能优异的聚醚醚酮新材料,在聚合物主链上引入不同的功能基团(如萘环、氮杂萘环等)及侧基功能基团(如苯、三氟甲基等),以提高聚芳醚酮的溶解性,或者通过共聚和共混等方式进一步改善材料的使用性能和加工性能,  相似文献   
12.
聚醚醚酮链段连接方式与其性能关系的研究   总被引:3,自引:0,他引:3  
利用亲核取代反应,通过缩聚法合成了一种新型聚芳醚酮50%交替共聚物PEDEK-PETMDEK,通过1HNMR证明其具有预期的结构.通过考察50%无规共聚物、50%交替共聚物、均聚物PEDEK和PET-MDEK的溶解性和热性能,发现聚醚醚酮共聚物的链段连接方式对聚合物性能有很大影响.50%交替共聚物是一种无定形固体,易溶于通常的有机溶剂,而50%无规共聚物却是半结晶聚合物,除浓硫酸外几乎不溶于任何溶剂;50%交替共聚物具有比50%无规共聚物更高的玻璃化转变温度.  相似文献   
13.
将2种主链中含有酯基结构的二胺单体:二(4-氨基苯基)对苯二甲酸酯(BPTP)和4-氨基苯基-4-氨基对苯甲酸酯(APAB),与几种常见的酸酐聚合,合成了一系列主链中含有酯基结构的新型聚酰亚胺膜材料.结果表明,所制备的聚酰亚胺薄膜表现出优良的热稳定性、机械性能和低吸水性,其中聚合物的表观玻璃化转变温度高达526℃,在空气和N2气气氛下5%的热失重温度分别在498和507℃以上,表明薄膜具有非常优异的热性能.由于聚合物主链中引入酯基结构而表现出低的线膨胀系数和吸水率.  相似文献   
14.
以双酚A二醚二酐(BPADA)和3乙-炔苯胺(APA)为原料,通过两步法合成一种热固性可交联的聚酰亚胺预聚体.将此预聚体分别与不同结构的热塑性聚酰亚胺(PI)共混,对其进行增韧改性,通过调控热塑性聚酰亚胺的质量分数,引入结构相似且含有更多柔性基团的热塑性聚酰亚胺(如含有醚键和对称甲基结构的二酐),得到了热固/热塑性聚酰亚胺复合膜.利用差示扫描量热仪(DSC)及扫描电镜(SEM)对该体系的相分离结构和相容性进行研究,并讨论其机械性能和热性能.结果表明,相分离结构使体系的机械性能得到改善,同时也保持了原有的优异热性能.  相似文献   
15.
选用一种在RTM双马来酰亚胺树脂(BMI)注射温度下不溶解的含磷聚芳醚酮(P-PAEK)热塑性树脂作为增韧剂,制备层间颗粒增韧碳纤维增强双马来酰亚胺树脂基复合材料.研究了不同热塑树脂含量对树脂浇铸体冲击性能的影响,利用扫描电镜表征了复相体系的微观形貌并分析其增韧机制,并通过层间断裂韧性测试表征了RTM双马树脂基复合材料增韧前后的层间韧性性能.结果表明,当附载热塑颗粒面密度为2 g/m2时,复合材料的I型层间断裂韧性(GIC)为0.54 k J/m2,II型层间断裂韧性(G_(IIC))为1.36 k J/m~2,较未增韧复合材料分别提升约56%和42%.增韧后的复合材料在保持原有力学性能的同时,其冲击后压缩强度(CAI)提升约29%,层间剪切强度达到111.7 MPa.  相似文献   
16.
以氨丙基封端的聚二甲基硅氧烷(PDMS)、 4,4'-二氨基二苯醚(4,4'-ODA)和3,4,3',4'-联苯四酸二酐(s-BPDA)为原料, 合成了聚酰胺酸硅氧烷嵌段共聚物. 将此嵌段共聚物和聚酰胺酸(s-BPDA/4,4'-ODA)共混, 通过控制制膜条件, 利用各组分在不同溶剂中的溶解度的差别, 使聚酰亚胺硅氧烷富集在膜的上表面. 因为两相在结构和性质上的相似性, 当聚酰胺酸硅氧烷和聚酰胺酸混合时, 具有很好的相容性, 消除了两相间的界面, 从而制备了优异的聚酰亚胺硅氧烷/聚酰亚胺两面异性的复合膜材料. 利用X射线光电子能谱(XPS)和水滴接触角对此复合膜进行了表征, 证明了此复合膜的两面异性, 并对此复合膜进行了热性能和机械性能研究, 发现此薄膜保持了聚酰亚胺优异的性能.  相似文献   
17.
可控交联聚醚醚酮的合成与热性能研究   总被引:2,自引:0,他引:2  
聚醚醚酮因其优异的综合性能 (耐热性、耐水解、耐辐射等 )在许多领域得到应用 [1~ 4 ] .但聚醚醚酮的玻璃化转变温度 ( Tg)较低 ( 4 2 6K) ,导致其使用温度较低 (在 5 1 3K以下 ) .为进一步提高聚芳醚酮类材料的使用温度 ,人们在聚醚醚酮主链中引入刚性结构 ,通过提高聚芳醚酮的刚性度来提高聚芳醚酮的熔点 ( Tm)及 Tg,从而提高材料的使用温度 [5,6 ] .文献 [7]中聚芳醚酮的 Tm 已经高达 741 K,但此材料很难加工成型 .通常热塑性材料具有优异的加工性能 ,但使用温度较低 .热固性材料的使用温度较高 ,但在加工固定尺寸形状铸件时存在困…  相似文献   
18.
合成了具有苯侧基的二胺单体1,4-双(4'-氨基苯氧基)-2-(苯基)苯(p-TPEQ), 并与3,3',4,4'-苯酮四羧酸二酐(BTDA)进行缩聚反应, 分别以4-苯乙炔苯酐(PEPA)和4-苯乙炔-1,8-萘二甲酸酐(PENA)作为封端剂, 合成了两个系列的苯乙炔封端的酰亚胺预聚体. DSC测试结果表明, 此类预聚体具有比PETI-5更宽的加工窗口; 利用所合成的预聚体制成了具有较高热分解温度热固性交联PI薄膜. 结果表明, PI预聚体加工性能良好, 其交联后具有优异的力学和热学性能; 同时PEPA封端的预聚体树脂具有比PENA封端的树脂更为优异的综合性能.  相似文献   
19.
聚芳醚酮是一类具有独特的耐热性、耐疲劳性、耐辐射性、化学稳定性、阻燃性和介电性等诸多优异性能的工程塑料, 广泛应用于航天、军事、电子、信息、核能和精密仪器等领域 [1,2]. 具有不同性质并有不同应用特性的聚芳醚酮的研究已有报道 [3~8]. 将甲基、苯基和叔丁基等不同取代基引入到聚芳醚酮中可提高溶解性, 改善加工性能, 其中引入一些功能型侧基也可实现聚芳醚酮的功能化.  相似文献   
20.
合成了含有苯乙炔基的二胺单体 3,5-二氨基-4'-苯乙炔苯甲酮(DPEB), 并与3,3',4,4'-联苯四酸二酐(s-BPDA)和1,4-双(4'-氨基苯氧基)-2-(苯基)苯(p-TPEQ)进行了缩聚反应, 以4-苯乙炔苯酐作为封端剂, 合成了交联侧基苯乙炔封端酰亚胺预聚体(n=4). DSC测试结果表明, 引入交联侧基后预聚体依然保持着较宽的加工窗口. 利用所合成的预聚体在370℃热压1 h制备了热固性薄膜. DMA测试结果表明, 引入交联侧基的预聚体树脂具有更高的玻璃化转变温度, 并且其储存模量在玻璃化转变后有很好的保持.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号