首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5657篇
  免费   1227篇
  国内免费   3693篇
化学   6754篇
晶体学   192篇
力学   353篇
综合类   151篇
数学   87篇
物理学   3040篇
  2024年   38篇
  2023年   127篇
  2022年   163篇
  2021年   216篇
  2020年   152篇
  2019年   211篇
  2018年   132篇
  2017年   220篇
  2016年   252篇
  2015年   239篇
  2014年   474篇
  2013年   389篇
  2012年   392篇
  2011年   424篇
  2010年   406篇
  2009年   474篇
  2008年   479篇
  2007年   436篇
  2006年   476篇
  2005年   449篇
  2004年   395篇
  2003年   406篇
  2002年   372篇
  2001年   374篇
  2000年   312篇
  1999年   305篇
  1998年   280篇
  1997年   280篇
  1996年   260篇
  1995年   271篇
  1994年   257篇
  1993年   219篇
  1992年   178篇
  1991年   189篇
  1990年   118篇
  1989年   120篇
  1988年   35篇
  1987年   19篇
  1986年   13篇
  1985年   9篇
  1984年   8篇
  1983年   5篇
  1982年   2篇
  1979年   1篇
排序方式: 共有10000条查询结果,搜索用时 125 毫秒
11.
水平管降液膜蒸发广泛应用在石油、化工、海水淡化等领域,对低喷淋密度温度演化规律的研究有助于拓宽其应用范围,理解其微观机理。本文在超亲水表面上结合红外热追踪技术,对水平管降液膜表面的温度演化规律进行了研究,分析了温度分区现象和温升规律。实验中首次发现了马鞍形液膜内部的高温环状结构,并结合三维数值模拟揭示了掺混作用导致的局部高温环状结构形成的内部机理。  相似文献   
12.
探索提高金属表面真空击穿阈值的方法,对脉冲功率技术的发展和应用具有重要意义。在金属表面电子发射理论分析的基础上,采用有限元法计算阴极杆表面电场随二极管电压的变化规律,设计了实验系统,并开展了实验研究。实验对比了在脉宽约30 ns、阴极杆与阳极筒间隙12 mm时,钛合金TC4阴极杆在不同种类高分子膜(膜厚30~60 μm)下真空击穿阈值的变化情况。在表面粗糙度Rz(轮廓最大高度)为0.8 μm的TC4阴极杆表面分别镀环氧树脂膜和丙烯酸膜,实验结果表明,镀丙烯酸膜阴极杆的击穿阈值约505 kV/cm,相对于不镀膜阴极杆,击穿场强提高了约20.6%;在表面粗糙度Rz为0.2 μm的TC4阴极杆表面分别镀聚酰亚胺膜和聚醚醚酮膜,实验结果表明,镀聚酰亚胺膜阴极杆的击穿阈值为584 kV/cm,相对于不镀膜阴极杆,击穿场强提高了约28.1%。因此,在金属表面镀丙烯酸膜、聚酰亚胺膜可以有效提高金属表面的真空击穿阈值。  相似文献   
13.
14.
以不锈钢网为基材, 利用单宁酸对不锈钢网进行表面预处理并功能化接枝两性离子基团, 制备了新型亲水和水下超疏油的单宁酸/两性离子改性油-水分离膜(TA-ZW-SSM). 利用X射线光电子能谱仪(XPS)、 扫描电子显微镜(SEM)及接触角测量仪等表征了其化学结构、 形态和润湿性. 研究结果表明, 两性离子基团通过化学键接枝在单宁酸预处理的不锈钢网表面. 油-水分离实验结果表明, 对于不同类型的油-水混合物, 本文制备的超亲水和水下超疏油特性的TA-ZW-SSM可实现重力驱动的高效油-水分离, 并具有较好的化学稳定性及再循环性.  相似文献   
15.
孙洪伟  郝建红  赵强  范杰清  张芳  董志伟 《强激光与粒子束》2021,33(12):123021-1-123021-6
在太阳能电池效率的评价中,电池材料、掺杂浓度、扩散长度等都是比较重要的参数,合理地改变相关参数可以优化太阳能电池的性能,提高电池效率。此外,在太阳能电池表面镀一层具有减反作用的光学薄膜(简称减反膜)也是提高电池效率的重要手段。以提高电池效率为目标,对单晶硅太阳能电池的掺杂浓度和扩散长度等微观参数进行计算优化,分析了掺杂浓度和扩散长度变化对电池效率的影响。并在此基础上分析了不同类型的减反膜对于电池效率的影响,给出了最佳减反膜材料及其膜系厚度,并且结合镀膜后电池量子效率的变化验证了其准确性。结果表明,在优化电池掺杂浓度和扩散长度的基础上,选择合适的减反膜,电池效率最高可达20.35%,相比于优化前提高了8.25%。  相似文献   
16.
批量生产中经常发生的锑化铟(InSb)芯片碎裂问题制约着InSb红外焦平面探测器(IRFPAs)成品率的提升.经分析认为:低周期液氮冲击下发生在器件边沿区域的InSb芯片破碎与该区域中迸溅金点的存在有关.为从理论上明晰迸溅金点对InSb芯片局部碎裂的影响,本文建立了包含迸溅金点的InSb IRFPAs结构模型,分析了迸溅金点的存在对应力分布的影响.在此基础上,在应力集中处预置不同长度的初始裂纹用以描述InSb晶片中的位错,以能量释放率为判据,探究InSb芯片碎裂与迸溅金点和位错线长短的关系.结论如下:1)迸溅金点的存在对InSb芯片碎裂的影响是局部的,在迸溅金点与InSb芯片接触区域的两侧会形成两个应力集中点; 2)环绕预置裂纹的能量释放率会随着预置裂纹长度的增加而加速增大,当预置裂纹长度接近InSb芯片上表面时,能量释放率近乎指数增加,并在预置裂纹贯穿InSb芯片时达到最大值; 3)迸溅金点引起的InSb芯片破碎属于Ⅰ型断裂失效模式,在多周期液氮冲击中,位错线在应力集中效应的驱使下逐步扩展,直至贯穿InSb芯片,最终形成宏观碎裂失效现象.  相似文献   
17.
物质分离是很多医疗和工业的核心技术.传统的固体过滤膜可以允许小于临界尺寸的粒子通过而阻挡大的粒子透过.然而,允许大粒子通过而小粒子停留的膜却很难人工制造.Birgitt Boschitsch Stogin、Luke Gockowski等人证明了完全由液体组成的液膜可以被设计成保留小于临界尺寸粒子而透过大尺寸粒子的过滤膜.基于上述研究,本文在液膜过滤器模型基础上进行解析推导,分析讨论了液膜的临界透过条件,并在实验中得到验证.同时,本文通过调节液膜表面张力系数实现了对粒子速度的筛选.  相似文献   
18.
通过溶剂添加剂1-氯萘(CN)和二硫化碳(CS2)溶剂退火(SVA)协同优化了基于窄带隙小分子受体的厚膜活性层形貌,揭示了该策略对共混膜形貌的调控机理,研究了其对活性层中的载流子动力学以及器件光伏性能的影响.结果表明,CN添加剂可以有效促进受体材料结晶聚集,CS2溶剂退火能够进一步提升活性层材料分子堆积的有序性,同时优化给受体材料相分离尺寸,降低共混膜表面的粗糙度,实现了良好的纳米尺寸相分离形貌.基于CN+SVA处理的PM6∶Y6厚膜(300 nm)器件的电荷传输和复合性质得到改善,取得了15.23%的光电转换效率(PCE),显著高于未经处理(PCE=11.75%)和仅用CN处理(PCE=13.48%)的光伏器件.该策略具有良好的适用性,将基于PTQ10∶m-BTP-PhC6器件的光伏性能从13.22%提升至16.92%.  相似文献   
19.
负载型Au催化剂因其在诸多反应过程中的高催化活性而备受研究者关注.然而针对负载型催化剂中Au物种结构的有效调控,以及催化过程中真实构-效关系的探索一直充满了挑战.用CeO2为Au物种担载基底,通过简单煅烧处理引起的CeO2结构变化,进而实现Au/CeO2之间界面作用力的调控.此研究发现Au纳米颗粒中Au0物种具备更为高效的催化室温CO氧化活性,结合多种原位表征分析,其室温条件下催化转化效率更依赖于CO吸附能力.而相比于单原子Au1和纳米Au颗粒,所制备的团簇Au/CeO2催化剂在较高温度(>50℃)展现出优异的催化CO氧化反应性能.随着温度升高,催化剂表界面O参与的MvK反应路径更易发生,因此具有更多表界面活性O物种和Auδ+位点的团簇Au/CeO2催化剂展现出最为优异的催化CO氧化性能.这些发现为高效负载型Au催化剂的制备提供了新思路并深化了对Au/CeO2催化作用机制的理解.  相似文献   
20.
随着质子交换膜燃料电池商业化的推进,为提高膜电极制造的可重现性,保障膜电极制造工艺的产品控制,需要Pt载量和分布无损高精度在线检测提供技术支撑。根据欧姆定律与焦耳定律,利用质子交换膜燃料电池膜电极在直流激励电压下产生的电流密度和热分布信号可以对膜电极电阻进行分析,通过膜电极Pt载量与其电阻的关系就可以实现膜电极Pt载量和空间分布分析。通过不同直流激励电压下电流测试,证明了膜电极电阻与Pt载量反相关,Pt载量定量表征精度为0.0008~0.0025 mg/cm2;利用红外热成像法对直流激励电压下膜电极热分布信息的采集成功实现了Pt载量分布的定性分析;最后,通过直流激励前后膜电极性能的对比证明了该方法对膜电极性能是无损的。高精度无损的直流激励测试方法可以实现膜电极Pt载量的高效在线测试,提高膜电极质量和制造效率,降低膜电极制造成本,对于质子交换膜燃料电池大规模商用具有重要意义。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号