首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  国内免费   27篇
化学   28篇
物理学   2篇
  2023年   1篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   1篇
  2010年   2篇
  2008年   2篇
  2007年   1篇
  2003年   1篇
  2002年   2篇
  2000年   5篇
  1999年   1篇
  1998年   1篇
排序方式: 共有30条查询结果,搜索用时 15 毫秒
11.
低碳烯烃(乙烯、丙烯等)是重要的基本有机原料,一般通过蒸汽裂解或催化裂解生成得到。基于中国的资源结构特点,发展非石油资源路线合成低碳烯烃具有重要的战略意义.其中从煤、天然气等资源出发,通过甲醇合成低碳烯烃就提供了这样一条可替代的路线.因此分子筛催化甲醇制烯烃(MTO)反应在过去几十年获得了广泛的关注和研究.为了获得高的产物选择性,一般要求MTO分子筛催化材料具有较小的孔道结构以及合适的笼结构,H-SAPO-34和H-SAPO-18分子筛就具有这样的空间结构特点.但是MTO催化反应产物分布多样复杂,因此需要深入认识MTO催化反应机理,从而优化设计分子筛结构和反应条件.目前已经形成的共识认为,MTO催化反应沿着烃池反应机理进行,但是烃池活性中心的结构还存在很多争议.我们曾系统研究了H-SAPO-18分子筛中多甲基苯的分布,以及催化MTO反应的芳烃循环路线,指出多甲基苯路线的总吉布斯自由能垒高于200 k J/mol(673 K).本文以四甲基乙烯(TME)作为代表性的烯烃烃池活性中心,系统研究了H-SAPO-18分子筛催化MTO反应的烯烃循环路线.TME循环路线的总吉布斯自由能垒不大于150 k J/mol,远小于芳烃循环的总能垒.因此,烯烃本身有很大可能是H-SAPO-18催化MTO反应的烃池活性中心.我们也指出了芳烃循环和烯烃循环路线的相似性,这包括基元反应的相似性和中间体结构的相似性.或者可以说,芳烃循环和烯烃循环路线机理上没有区别,关键是为了得到具有烷基(侧)链的裂解前驱体,最后通过裂解生成低碳烯烃.在烯烃循环路线中,产物选择性与裂解前驱体(高碳烯烃、碳正离子等)的分布以及裂解动力学有关.计算发现生成乙烯和丙烯的裂解基元反应能垒与裂解前驱体的碳数之间存在线性关系.本文进一步强调了分子筛催化MTO反应中烯烃活性中心的重要性,并且清楚指出了烯烃循环和芳烃循环的机理相似性.  相似文献   
12.
王传明  王仰东  谢在库 《催化学报》2018,39(7):1272-1279
低碳烯烃(乙烯、丙烯等)是重要的基本有机原料, 一般通过蒸汽裂解或催化裂解生成得到.基于中国的资源结构特点, 发展非石油资源路线合成低碳烯烃具有重要的战略意义. 其中从煤、天然气等资源出发, 通过甲醇合成低碳烯烃就提供了这样一条可替代的路线. 因此分子筛催化甲醇制烯烃(MTO)反应在过去几十年获得了广泛的关注和研究. 为了获得高的产物选择性, 一般要求MTO分子筛催化材料具有较小的孔道结构以及合适的笼结构, H-SAPO-34和H-SAPO-18分子筛就具有这样的空间结构特点. 但是MTO催化反应产物分布多样复杂, 因此需要深入认识MTO催化反应机理, 从而优化设计分子筛结构和反应条件.目前已经形成的共识认为, MTO催化反应沿着烃池反应机理进行, 但是烃池活性中心的结构还存在很多争议. 我们曾系统研究了H-SAPO-18分子筛中多甲基苯的分布, 以及催化MTO反应的芳烃循环路线, 指出多甲基苯路线的总吉布斯自由能垒高于200 kJ/mol (673 K). 本文以四甲基乙烯(TME)作为代表性的烯烃烃池活性中心, 系统研究了H-SAPO-18分子筛催化MTO反应的烯烃循环路线. TME循环路线的总吉布斯自由能垒不大于150 kJ/mol, 远小于芳烃循环的总能垒. 因此, 烯烃本身有很大可能是H-SAPO-18催化MTO反应的烃池活性中心. 我们也指出了芳烃循环和烯烃循环路线的相似性, 这包括基元反应的相似性和中间体结构的相似性. 或者可以说, 芳烃循环和烯烃循环路线机理上没有区别, 关键是为了得到具有烷基(侧)链的裂解前驱体, 最后通过裂解生成低碳烯烃. 在烯烃循环路线中, 产物选择性与裂解前驱体(高碳烯烃、碳正离子等)的分布以及裂解动力学有关. 计算发现生成乙烯和丙烯的裂解基元反应能垒与裂解前驱体的碳数之间存在线性关系. 本文进一步强调了分子筛催化MTO反应中烯烃活性中心的重要性, 并且清楚指出了烯烃循环和芳烃循环的机理相似性.  相似文献   
13.
杨勇  王仰东  刘苏  宋庆英  谢在库  高滋 《催化学报》2007,28(12):1028-1030
采用超声法在非水溶剂介质中制备了稀土金属La盐等促进的硫化钼基催化剂,考察了其CO加氢选择性合成乙醇等低碳混合醇的催化性能.在3.0MPa,330℃和H2/CO(体积比)=2.0的反应条件下,La促进的催化剂表现出较Mo-Co-K硫化物基催化剂更高的催化活性,CO转化率和产物中乙醇的分布可分别达到17.2%和53.4%.扫描电镜、透射电镜、X射线衍射和光电子能谱等表征结果表明,稀土金属La盐的加入改善了Mo-Co-K硫化物基催化剂的外观形貌和电子结构,对提高催化活性和乙醇的分布起到重要的作用.  相似文献   
14.
多级孔沸石分子筛的结构性质及其催化性能是近年来分子筛研究的热点.本文采用蒸汽辅助晶化的方法制备了多级孔ZSM-5沸石分子筛,采用NH3程序升温脱附和原位吸附红外光谱等方法研究了其表面酸性质,用邻二甲苯异构化反应考察了其催化性能.结果表明,多级孔结构分子筛的结晶度和总酸量有所下降,但Lewis酸中心却有所增加.进一步研究发现,多级孔结构分子筛的外表面酸中心数量远高于常规分子筛,从而证实了多级孔结构可以将更多的酸中心暴露到外表面;而外表面酸中心数量的增多和扩散传质的改善是多级孔ZSM-5分子筛在邻二甲苯异构化反应中具有更高催化活性和对二甲苯产率的重要原因.  相似文献   
15.
本研究采用外延生长方法制备出核壳结构分子筛ZSM-5@Silicalite-1。相关表征结果显示,惰性Silicalite-1壳层均匀包覆在ZSM-5的外表面,调控了分子筛酸性质,特别是降低了外表面酸性,有利于改善芳烃分布。将ZSM-5@Silicalite-1与Zn-Cr氧化物耦合应用于二氧化碳加氢制芳烃的反应,轻质芳烃(苯、甲苯、二甲苯)在总芳烃中的占比从ZnCr2O4/ZSM-5耦合体系的14.8%显著提高到33.5%。此外,Silicalite-1壳层的疏水性还可有效抑制逆水煤气变换副反应,降低CO的选择性。在优化的壳层厚度下,ZnCr2O4/ZSM-5@Silicalite-1耦合体系的芳烃时空收率较ZnCr2O4/ZSM-5体系提高了22%。  相似文献   
16.
采用气相催化沉积法催化合成纳米碳管,比较了不同金属氧化物和金属负载型沸石催化剂以及不同分子筛载体对合成纳米碳管的影响,并用TEM,XRD表征其形貌和结晶度,用DTA-TG考察了纳米碳管的热和稳定性。实验结果表明纳米碳管的形成除了与金属种类有关外,还直接与催化剂的颗粒大小和分散状态有关。粒径在20nm左右的不规则形状的纳米粒子是形成纳米碳管的活性组分,非负载和负载型的催化剂均表明活性组分的粒径与纳米碳管的管径有一定的对应关系。化学提纯后能得到高纯度的纳米碳管;其管壁具有较好的石墨化结构,在空气中的热稳定性大于400℃,而在氮气中能维持到1200℃以上。  相似文献   
17.
分子筛的制备过程一般需要结构导向剂的参与.结构导向剂主要包括碱(土)金属离子、有机胺或季铵盐为代表的有机模板剂和固体晶种等三类.研究合成凝胶中不同结构导向剂之间的作用对于理解分子筛晶化机理意义重大.以往的研究大都集中在模板剂-模板剂、模板剂-碱(土)金属离子和模板剂-同晶之间的相互作用,迄今尚未有模板剂-异晶之间相互作用研究的报道.我们研究组首次发现模板剂和异晶在分子筛制备中存在协同导向效应.在硅锗铝IWR分子筛的合成中,我们考察了不同的季铵碱模板剂和铝源,发现只有使用胆碱作模板剂、*BEA分子筛作铝源才可以成功制得目标分子筛,相同条件下不加入*BEA分子筛或换用MOR、ZSM-5、MCM-22、USY分子筛及异丙醇铝等铝源都无法合成得到IWR分子筛.这说明*BEA分子筛在IWR分子筛的制备中起到了其他铝源所不具备的结构导向作用,因此我们称之为合成IWR分子筛的"异晶".为了研究胆碱和*BEA分子筛之间的相互作用,进而揭示模板剂-异晶协同导向制备分子筛的一般规律与反应机理,我们制备了不同晶化时间的IWR分子筛样品,使用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)、紫外-拉曼光谱(UV-Raman)、固体核磁共振(MAS NMR)和N2物理吸附等手段对这些样品进行了表征.结果显示,加热过程中*BEA分子筛首先发生溶解解离, 72 h后该分子筛相完全消失;12 h开始出现CDO分子筛相,随着晶化时间延长, CDO分子筛先增多后减少,在24 h时达到最大值, 120 h时消失,说明该分子筛是晶化过程的一个中间相;IWR分子筛在12 h开始出现,此后结晶度不断升高,至168 h晶化完全.在上述表征的基础上,我们提出了模板剂-异晶协同导向制备IWR分子筛的晶化机理.IWR分子筛的晶化分为以下5个步骤:(1)*BEA分子筛溶解解离得到硅铝4元环、5元环和6元环等结构单元;(2)胆碱诱导形成硅锗5元环结构单元;(3)硅锗5元环组装生成CDO分子筛;(4)CDO分子筛溶解解离形成硅锗5元环;(5)*BEA分子筛导向的结构单元与胆碱导向的结构单元重组生成IWR分子筛.其中,步骤3和4是一对可逆反应,且可与步骤5同时进行;随着反应物原料的不断消耗,步骤5占据主导,从而导致CDO分子筛完全消失和IWR分子筛的结晶完成.由于胆碱只导向生成5元环结构单元,而构成IWR分子筛骨架结构的4元环和6元环只能由*BEA分子筛提供,因而模板剂和异晶在反应中都不可或缺,二者起到协同导向的作用.分析发现,*BEA分子筛与IWR分子筛具有共同的结构单元(4、5、6元环)和一定的结构相似性是其可以成为异晶、发挥协同导向作用的关键.上述协同导向法的关键在于模板剂和异晶分别导向生成部分结构单元,再经重组得到目标分子筛.这种方法有望用于合成通过传统水热法难以得到的分子筛,并且为新结构分子筛的开发提供新思路.使用协同导向法制备更多种类分子筛的研究正在进行中.  相似文献   
18.
用周期性密度泛函理论方法(PBC-DFT)研究了SAPO-34分子筛中甲基萘催化甲醇制烯烃(MTO)反应的侧链烃池机理. 在侧链烃池机理中, 甲基化用于烷基侧链的增长, 通过间接质子转移消除烷基侧链得到乙烯丙烯产物. 计算结果表明在不考虑旋转限制的情况下二甲基萘的MTO催化活性高于多甲基苯, 催化生成丙烯的选择性比生成乙烯的高. 生成乙烯的控速步骤是乙基侧链的消除, 而生成丙烯的控速步骤是具有环外双键中间体的甲基化. 但是SAPO-34分子筛对反应中间体的旋转限制作用可能降低多甲基萘的MTO催化活性.  相似文献   
19.
近年来可再生资源以及化工原料的多元化备受关注,生物资源成为其中的一个新亮点。糠醛是一种可由生物质转化而来的重要化工原料,将其催化还原直接转化为糠醇是构建以糠醛为平台化合物的生物基呋喃衍生物价值链的重要环节。长久以来,糠醛制糠醇研究主要集中在以 H2作氢源的加氢工艺及相关催化剂配方的优化、改进等方面,尽管在工业上已获得成功应用,但由于需大量消耗源于化石燃料的 H2,使得该路线总体上仍依赖于化石能源。此外,大量使用 H2所涉及的储存、运输和使用条件苛刻以及如何有效控制目标产物的选择性等问题也一直是糠醛传统催化加氢所面临的挑战。因此,寻求可替代传统氢气作氢源,更为经济实用且高效的糠醛高选择性催化还原制糠醇路线,对于发展以糠醛转化为技术核心的新一代糠醛基化工产业链,以及实现诸如5-羟甲基糠醛等其它重要生物质基平台化合物的还原转化,均具有重要意义。本文旨在通过实证性实验,考察以价廉且来源丰富的 CO替代 H2来实现高选择性液相糠醛催化转化制糠醇的可行性。众所周知, CO不但是 C1化学工业中至关重要的基础原料,在发展并完善面向未来的低碳能源及化学品清洁合成新技术等方面也有着非常大的应用潜力。鉴于 CO也是炼钢焦炉气的重要组成部分,因此开发新颖的基于 CO的还原转化和相关反应新技术,不但可有效拓展 CO的潜在应用范围,对于实现传统高能耗行业的节能减排和转型升级也有着重要的启示和借鉴意义。我们近期利用 CO/H2O为还原介质,在温和条件下实现了纳米 Au催化取代硝基或羰基化合物高效、高化学选择性还原,本文系统研究了包括传统铂族金属在内的各类高分散贵金属催化剂、反应温度、反应压力以及反应时间等对糠醛转化率和糠醇选择性的影响。通过优化催化剂制备和反应条件,发现以 CO/H2O作为氢源,在金红石单相 TiO2负载纳米 Au(Au/TiO2-R)的催化作用下,于90oC, CO压力为4 MPa,糠醛与 Au的摩尔比为200的条件下反应4 h即可实现糠醛至
  糠醇的定量转化。研究表明,上述过程中催化剂可多次循环使用;反应温度或反应压力的增加均有利于反应进行,且在糠醛与纳米 Au的摩尔比高达2000甚至5000时,反应仍可完全进行到底。尤其值得一提的是,该催化体系对于反应原料中含有相当杂质的非新鲜提纯的粗糠醛亦具有很好的耐受性,甚至可直接以各种 H2/CO比例的来源广泛的合成气为氢源,实现目标反应,表明该体系是一种极具开发和应用潜力的糠醛转化制糠醇新技术。  相似文献   
20.
从工业催化的角度思考和探讨了分子筛催化剂合成、催化及应用方面存在的一些问题与挑战, 并从沸石分子筛的高效催化、新结构分子筛合成与催化应用、沸石分子筛的经济合成、分子筛在绿色环保领域的新应用等几个方面, 综述了国内外相关的最新研究进展, 探讨了分子筛催化剂未来的发展方向. 旨在引发人们对分子筛催化未来向经济、可控、高效催化、绿色环保和新应用等方面发展的思考与探索.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号