首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1414篇
  免费   532篇
  国内免费   535篇
化学   987篇
晶体学   82篇
力学   112篇
综合类   73篇
数学   315篇
物理学   912篇
  2024年   4篇
  2023年   32篇
  2022年   60篇
  2021年   44篇
  2020年   36篇
  2019年   42篇
  2018年   52篇
  2017年   44篇
  2016年   41篇
  2015年   69篇
  2014年   94篇
  2013年   75篇
  2012年   93篇
  2011年   96篇
  2010年   88篇
  2009年   114篇
  2008年   111篇
  2007年   94篇
  2006年   86篇
  2005年   97篇
  2004年   107篇
  2003年   88篇
  2002年   92篇
  2001年   69篇
  2000年   80篇
  1999年   61篇
  1998年   78篇
  1997年   70篇
  1996年   56篇
  1995年   57篇
  1994年   49篇
  1993年   56篇
  1992年   44篇
  1991年   38篇
  1990年   27篇
  1989年   22篇
  1988年   19篇
  1987年   16篇
  1986年   15篇
  1985年   12篇
  1984年   13篇
  1983年   7篇
  1982年   4篇
  1981年   4篇
  1980年   4篇
  1979年   4篇
  1975年   2篇
  1964年   2篇
  1962年   2篇
  1960年   4篇
排序方式: 共有2481条查询结果,搜索用时 15 毫秒
11.
利用粗粒化分子动力学模拟研究了电场作用下离子型聚合物复合囊泡形变与破裂的过程.定量分析了囊泡破裂过程中的结构变化,包括囊泡的形变程度、破裂速度、组分分布以及破裂后的结构.研究表明,电场强度较弱时,囊泡表面所吸附的聚电解质首先脱落,囊泡由球形结构转变为椭球结构.随着电场强度增大,离聚物的离子侧基发生重新排布,囊泡表面电荷的有序结构被破坏,导致囊泡的结构无法维持而破裂,囊泡塌缩,分裂形成离聚物团簇,并进一步破裂为小尺寸的离聚物聚集体,均匀分散于溶液中.本文利用分子动力学模拟明确了电场中离子型高分子复合囊泡破裂过程的分子机理,为药物释放技术的优化及发展提供了理论支持.  相似文献   
12.
建立了以苯硼酸为衍生试剂,柱前衍生-高效液相色谱测定肥料中24-表芸苔素内酯(24-EBL)和28-高芸苔素内酯(28-HBR)的方法。样品采用甲醇作为提取溶剂,常温条件下用苯硼酸衍生30 min,乙腈/水(85/15, V/V)为流动相,在222 nm波长下进行分析。结果表明:在0~1250 mg/kg范围内线性关系良好,相关系数(r2)≥0.999。24-EBL和28-HBR的检出限分别为0.46和0.51 mg/kg。样品加标回收率为67.1%~128.5%,批间相对标准偏差为0.09%~2.4%。该方法满足2种芸苔素内酯异构体在肥料内定量分析的要求。  相似文献   
13.
采用恒电位沉积法在玻碳电极上制备原位铋膜电极,利用循环伏安法、电化学交流阻抗探究玻碳电极和原位铋膜电极表面的电化学行为。对缓冲液pH、铋离子浓度、富集时间及电位等实验条件进行优化,利用示差脉冲伏安法实现高纯铟电解液中铟离子(In3+)的检测,In3+的溶出峰电流值和其浓度在0.6~2 mg/L范围呈线性关系,线性方程为c=0.061I+0.093,相关系数(R2)为0.998。在NaCl和明胶存在下,该方法仍能够有效地检测高纯铟电解液中In3+浓度。  相似文献   
14.
依据GB/T 41701—2022中的气相色谱法,对电子烟烟液中烟碱、丙二醇和丙三醇含量进行测定,并进行测量不确定度评定。建立了数学模型,分析测量过程,确定不确定度来源,包括样品重复测量、标准溶液配制、标准曲线拟合、样品处理。通过计算各个不确定度分量,得到测量结果的合成相对标准不确定度和扩展不确定度。结果显示,在95%的置信水平下,包含因子k=2,当电子烟烟液样品中烟碱、丙二醇和丙三醇质量分数测定值分别为17.92、657.37、282.18 mg/g时,扩展不确定度分别为0.47、26.96、11.91 mg/g。气相色谱法测定电子烟烟液中烟碱、丙二醇和丙三醇的不确定度主要来源于标准曲线拟合及标准溶液配制,在日常检验过程中应采用纯度更高的标准物质、使用校正级别高的玻璃量器、规范标准溶液配制操作过程等措施保证测量结果的科学性与准确性。  相似文献   
15.
在ITO玻璃表面构建了三维有序多孔结构的金掺杂纳米Ti O2薄膜(3DOM GTD/ITO),同时制备了一种细胞色素c(Cyt c)酶生物传感器(Cyt c/3DOM GTD/ITO)。通过透射电镜(TEM)、扫描电镜(SEM)对修饰电极进行表征。紫外-可见光谱实验表明吸附在GTD上的Cyt c能够保持其生物活性,二级结构未被破坏。同时研究了Cyt c在3DOM GTD/ITO修饰电极表面的直接电化学及对H2O2的电催化行为。结果显示,Cyt c在3DOM GTD/ITO修饰电极上有显著的直接电化学响应,峰电流与扫描速度呈线性关系,说明该电极过程是表面电化学控制过程。Cyt c/3DOM GTD/ITO修饰电极对H2O2具有良好的催化性能,线性范围为3.0×10-7~1.70×10-5mol/L,检出限为3.6×10-8mol/L(S/N=3),响应时间为5 s,且该修饰电极具有较好的重现性和稳定性。  相似文献   
16.
采用自下而上方法制备了金-介孔二氧化硅复合纳米管,其中金纳米粒子作为催化剂嵌在介孔二氧化硅纳米管管壁内侧。金纳米颗粒的团聚、脱落和晶粒尺寸生长都可以被有效限制,而且催化剂负载量和尺寸大小均可实现简单控制。管壁中的介孔孔道、纳米管末端开口以及一维中空管道可以协同促进反应物扩散,从而提高4-硝基苯酚还原反应活性。循环实验证明这种复合纳米管催化剂具有良好的可重复使用性,而且在反应过程中未出现金纳米粒子脱落或团聚现象。  相似文献   
17.
采用甘氨酸-硝酸盐燃烧法制备了Sr2CeO4和Sr2CeO4:Nd3+发光纳米粒子。样品的结构及性质采用XRD,TEM,荧光光谱及荧光衰减曲线等进行表征。在1200℃煅烧1h能够得到均匀的类球形Sr2CeO4:Nd3+纳米粒子,其粒径大小为20~40nm,并具有良好的分散性和高效的近红外发光特性。Nd3+合适掺杂浓度为0.15%(摩尔分数)。对Sr2CeO4:Nd3+近红外发光的机制分析表明:通过基质Sr2CeO4吸收紫外光,基团CeO4发生了电荷转移达到激发态,并将激发态能量传递给了Nd3+,从而使Sr2CeO4:Nd3+产生了特征的近红外发射。  相似文献   
18.
将氧化石墨凝胶超声不同时间制备氧化石墨烯(GO)溶胶,再以GO溶胶为前驱体采用一步水热法制备了三维还原氧化石墨烯(3DRGO),采用X射线衍射(XRD)、拉曼光谱、原子力显微镜(AFM)、扫描电子显微镜(SEM)和电化学测试等研究了不同超声时间对3DRGO的形貌、结构及超级电容性能的影响.结果表明,当超声时间不超过120 min时,经水热反应后还原氧化石墨烯均能形成稳定的三维结构,但随着超声时间的延长,三维结构尺寸不断减小,强度增加,样品的内部结构也由片状逐渐向多孔网状转化;当超声时间超过120 min时,还原氧化石墨烯虽具有网状结构,但在宏观上不利于形成稳定的三维结构.电化学测试结果表明,经不同超声时间所制备的还原氧化石墨烯均表现出较好的超级电容性能,其中超声时间为120 min时制备的3DRGO具有更均匀的多孔网状结构,表现出了最佳的超级电容性能,在1 A/g电流密度下其比电容可达328 F/g,即使在20 A/g的大电流密度条件下,其比电容仍可高达240 F/g.  相似文献   
19.
以“探究原电池电动势的影响因素”为项目学习主题,以探讨化学电源的应用、探究原电池的工作原理、测量原电池的电动势、搭建高电动势原电池等4个任务为关键项目任务,呈现高中“化学反应与电能”跨学科项目式教学设计思路和教学实践过程。  相似文献   
20.
针对深水固井作业过程中水泥水化放热较大,易致使环空地层天然气水合物分解的技术难题,本文以石蜡为芯材,碳酸钡为壁材,制备了一种油井用相变微胶囊。首先,利用FT-IR、DSC、TGA与SEM对相变微胶囊的化学组成、热性能与微观形貌进行了表征。结果表明:相变微胶囊的封装效率为67.40%,具有较高的封装效率和良好的潜热储存能力。其次,对粒径分布与润湿性能进行了测试。结果表明:微胶囊颗粒平均粒径为4.946 μm,小于水泥颗粒粒径17.201 μm,可较好的镶嵌在水泥石中,并充填于水泥水化产物之间,减小对水泥石力学性能的负面影响;微胶囊与水的静态接触角为46.8°,具有良好的亲水性能,可应用于水基的水泥浆环境中。最后,将微胶囊应用于水泥浆体系,研究了水泥浆的水化温升和水化热。结果表明:与空白水泥浆相比,加入12%相变微胶囊水泥浆的最高水化温升与水化热(48 h)分别下降了14.56%和43.23%。   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号