首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  国内免费   20篇
化学   24篇
  2021年   1篇
  2020年   1篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   6篇
  2012年   1篇
  2011年   2篇
  2010年   3篇
  2006年   2篇
  2005年   1篇
  2001年   1篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
11.
非晶态合金Ru基催化剂在苯选择加氢中的应用进展   总被引:3,自引:0,他引:3  
化学还原法制备的非晶态合金Ru基催化剂融合了纳米粒子和非晶态合金的结构特征,在苯选择加氢反应中表现出高活性和高环己烯选择性;尤其是负载型非晶态合金Ru基催化剂,具有贵金属利用率高和易于工业化等优点,有着明显的竞争优势,本文综述了苯选择加氢的热力学和动力学特征,非晶态合金催化剂结构和组成及其对催化性能的影响;总结了催化工...  相似文献   
12.
采用共沉淀法制备了一系列不同Zn负载量的Ru-Zn催化剂.XRD和XPS结果表明,催化剂中的Zn大部分以ZnO形式存在,在加氢过程中催化剂表而的ZnO可以与浆液中的zn2+形成碱式硫酸锌盐.随催化剂中Zn负载量的增加,碱式硫酸锌盐的量也增加,这导致催化剂活性降低和环己烯选择性升高.当Zn负载量为8.6%时,加氢后碱式硫...  相似文献   
13.
采用化学还原法制备了苯选择加氢制环己烯催化剂Ru-B/ZrO2,考察了Cr,Mn,Fe,Co,Ni,Cu和Zn等过渡金属的添加对Ru-B/ZrO2催化剂性能的影响.结果表明,这些过渡金属的添加均可提高Ru-B/ZrO2催化剂中的B含量.B的修饰及第二种金属或金属氧化物的集团效应和配位效应导致Ru-B/ZrO2催化剂活性降低和环己烯选择性升高.当Co/Ru原子比为0.06时,Ru-Co-B/ZrO2催化剂上反应25min苯转化率为75.8%时,环己烯选择性和收率分别为82.8%和62.8%.在双釜串联连续反应器中和优化反应条件下,Ru-Co-B/ZrO2催化剂使用419h内苯转化率稳定在40%左右,环己烯选择性和收率分别稳定在73%和30%左右.  相似文献   
14.
采用共沉淀法制备了水溶性聚合物修饰的苯选择加氢制环己烯Ru-Zn催化剂, 并用X射线衍射、 透射电镜、 X射线能量色散谱、 X射线光电子能谱和氮气物理吸附等对加氢后催化剂进行了表征. 结果表明, 水溶性聚合物的种类和聚乙二醇-20000(PEG-20000)的用量对Ru-Zn催化剂微晶尺寸有显著影响. 在ZnSO4存在下, 随着Ru-Zn催化剂Ru微晶尺寸增加, 苯转化率降低, 环己烯最高收率则呈火山型变化趋势. 用0.4 g PEG-20000修饰的Ru-Zn催化剂[m(PEG-20000)∶m(Ru)=0.2]Ru的微晶尺寸为4.8 nm, 环己烯最高收率为62.2%. Ru微晶尺寸影响催化剂表面的Zn/Ru原子比, 进而影响Ru-Zn催化剂性能.  相似文献   
15.
 研究了在中试装置上经长期运转后的非晶态合金Ru-La-B/ZrO2催化剂的失活原因与再生方法. 结果表明: 催化剂失活不是由微孔堵塞、比表面积减小、晶粒长大或催化剂中毒而引起的,而是由于在长期运转过程中催化剂吸附了反应浆液中的Zn2+ 和反应器壁引入的Fe2+ , 通过酸洗的方法可以使催化剂的活性和选择性基本恢复.  相似文献   
16.
以异丙胺(IPA)为模板剂, 3-哌嗪基丙基甲基二甲氧基硅烷(PZPMS)为助剂, 水热合成出由纳米片组装而成的鸟巢状SAPO-5和纳米晶组装体SAPO-34. 考察了模板剂、 有机硅烷和硅投料量对晶化的影响, 发现合成产品的晶相和形貌随有机硅烷的添加依次变为SAPO-14, SAPO-5和SAPO-5/SAPO-34的混相. 固定PZPMS的量不变, 产物晶相随硅烷投料量的增加从SAPO-5逐渐转变成SAPO-34分子筛. 对合成的特殊形貌SAPO分子筛进行了表征, 并结合对比实验揭示PZPMS与IPA的复配是获得特殊形貌SAPO分子筛的关键. 此外, 所制备的SAPO-34样品由于良好扩散传质性能, 在甲醇制烯烃(MTO)反应中显示了优异的催化性能, 乙烯加丙烯选择性最高可达86.95%.  相似文献   
17.
利用沉淀法制备了纳米Ru催化剂, 在ZnSO4存在下考察了Na2SiO3·9H2O和二乙醇胺作反应修饰剂对Ru催化剂催化苯选择加氢制环己烯性能的影响, 并用X-射线衍射(XRD)、X-射线荧光光谱(XRF)和透射电镜-能量散射谱(TEM-EDS)等物理化学手段对加氢前后Ru催化剂进行了表征。结果表明, 在水溶液中Na2SiO3与ZnSO4可以反应生成Zn4Si2O7(OH)2H2O盐、H2SO4和Na2SO4, 化学吸附在Ru催化剂表面上的Zn4Si2O7(OH)2H2O盐起着提高Ru催化剂环己烯选择性的关键作用。Na2SiO3·9H2O量的增加, 生成的Zn4Si2O7(OH)2H2O盐逐渐增加, Ru催化剂的活性降低, 环己烯选择性逐渐升高。向反应体系中加入二乙醇胺, 它可以中和Na2SiO3与ZnSO4反应生成的硫酸, 使化学平衡向生成更多的Zn4Si2O7(OH)2H2O盐的方向移动, 导致Ru催化剂环己烯选择性增加。当Ru催化剂与ZnSO4·7H2O、Na2SiO3·9H2O和二乙醇胺、分散剂ZrO2的质量比为1.0:24.6:0.4:0.2:5.0时, 2 g Ru催化剂上苯转化73%时环己烯选择性和收率分别为75%和55%, 而且该催化剂体系具有良好的重复使用性和稳定性。  相似文献   
18.
用共沉淀法制备了纳米Ru-Zn催化剂,考察了阿拉伯树胶修饰对苯选择加氢制环己烯催化剂性能的影响,并用X射线衍射(XRD)、透射电镜(TEM)、N2-物理吸附、X射线光电能谱(XPS)和X射线荧光光谱(XRF)等手段对催化剂进行了表征。结果表明,阿拉伯树胶的用量可以调变Ru-Zn催化剂的粒径。最高环己烯收率随粒径的增大呈火山型变化趋势。当阿拉伯树胶与RuCl3·xH2O的质量比为0.033时,Ru-Zn催化剂的最佳粒径为4.0 nm,最高环己烯收率达59.6%。且该催化剂具有良好的重复使用性能。  相似文献   
19.
纳米 ZrO2 作分散剂的 Ru-Zn 催化剂上苯选择加氢制环己烯   总被引:2,自引:0,他引:2  
 采用水热法合成了比表面积分别为 34 和 87 m2/g 的 ZrO2 样品 (分别记为 ZrO2-34 和 ZrO2-87), 并考察了它们作分散剂时 Ru-Zn 催化剂上苯选择加氢制环己烯反应的性能. 结果表明, 两个 ZrO2 样品具有相近的纯度和物相, 晶粒粒径分别为 21.6 和 11.4 nm. 其中 ZrO2-34 具有较小的比表面积、较大的孔径、较小的粒径、集中的粒度分布和较大的堆密度, 因而更适合用作苯选择加氢制环己烯 Ru-Zn 催化剂的分散剂, 且循环使用多次催化剂仍表现出较高的选择性和稳定性.  相似文献   
20.
 制备了新型无铬非晶态 Al2O3 负载的 Cu-Zn 催化剂, 并采用 X 射线衍射、透射电镜、程序升温还原和红外光谱进行了表征, 考察了其液相酯加氢制高碳醇的催化性能, 并优化了反应条件. 结果表明, 在 240 °C 和 10 MPa 氢压相对温和的反应条件下, 髙碳醇收率达 86.3%, 远远高于相同条件下传统的 Cu-Cr 基催化剂. 对前体、焙烧后及还原后催化剂的物相进行了研究, 探讨了催化剂组分及表面羟基的作用.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号