首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1539篇
  免费   478篇
  国内免费   470篇
化学   2151篇
晶体学   18篇
力学   22篇
综合类   8篇
数学   4篇
物理学   284篇
  2024年   20篇
  2023年   46篇
  2022年   114篇
  2021年   188篇
  2020年   356篇
  2019年   156篇
  2018年   135篇
  2017年   85篇
  2016年   190篇
  2015年   142篇
  2014年   147篇
  2013年   146篇
  2012年   85篇
  2011年   70篇
  2010年   41篇
  2009年   73篇
  2008年   76篇
  2007年   79篇
  2006年   95篇
  2005年   59篇
  2004年   53篇
  2003年   45篇
  2002年   23篇
  2001年   18篇
  2000年   12篇
  1999年   5篇
  1998年   11篇
  1997年   4篇
  1996年   2篇
  1994年   3篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
排序方式: 共有2487条查询结果,搜索用时 31 毫秒
31.
A novel gel-like process has been developed for synthesizing LiaNi0.8Co0.2O2 powders,using citric acid as a chelating agent. This process improves the homogeneity of constituent cation and enhances their reactivity in the obtained precursor. The results of electrochemical test demonstrated that these materials exhibited excellent electrochemical properties. Its initial capacity reached 181.6 mAh/g and reversible efficiency at the first cycle is about 88.6%.  相似文献   
32.
PVC disulfide (2SPVC) was synthesized by solution crosslink and its molecular structure was confirmed by infrared spectrum. 2SPVC's specific area is 36.1 m2·g-1 tested by stand BET method, and granularity experiment gives out the particle size of d0.5= 11.3μm. With SEM (Scanning Electron Microscope) experiment the surface morphology and particle shape of 2SPVC were observed. Cyclic voltammetry (scan rate: 0.5 mV·s-1) shows that 2SPVC experience an obvious S-S redox reaction in charge-discharge process. When 2SPVC was used as cathode material for secondary lithium battery in a 1 mol·L-1 solution of lithium bis(trifluoromethylsulfonyl) imide (Li(CF3SO2)2N) in a 5:45:50 volume ratio mixture of o-xylene (oxy), diglyme (DG) and dimethoxymethane (DME) at 30℃, the first discharge capacity of 2SPVC is about 400.3 mAh·g-1 which is very close to its theoretical value (410.5 mAh·g-1) at a constant discharge current of 15 mA·g-1. It can retain at about 346.1 mAh·g-1 of discharge capacity after 30 charge-discharge cycles. So 2SPVC is a very promising cathode candidate for rechargeable lithium batteries.  相似文献   
33.
The Chevrel phase (CP), Mo6S8, was found to be an excellent cathode material for rechargeable magnesium batteries. Mo6S8 is obtained by a leaching process of Cu2Mo6S8, which removes the copper. A new method of Cu2Mo6S8 production was developed. In contrast to the well-known solid-state synthesis of CP, the method is based on the reaction in a molten salt media (KCl). A fast kinetics of this reaction allows using less active, but more convenient precursors (sulfides instead of sulfur), decreasing temperature and synthesis duration, as well as operation in the inert atmosphere instead of dynamic evacuated systems. It was shown that the composition and the electrochemical behavior of the products obtained by MSS and by the solid-state synthesis are identical. Thus, the molten salt method is extremely attractive for the large-scale production of the active materials for Mg batteries.  相似文献   
34.
Aimed at the internal short circuit problem due to large deformation of the prismatic lithium-ion battery cell under impact loadings, a simplified battery model was first established. Then the motion equations of velocity and displacement based on the membrane factor method were proposed. With the effects of the face-sheet thickness and the densification region on the normalized final deflection, impact response characteristics of prismatic battery cells were investigated in detail. The results show that, the improved motion equations involving the membrane factor can reflect the dynamic response mechanisms of the prismatic battery cell under impact loadings, and the large deflection under high-speed impact can be predicted. With the increase of the face-sheet thickness, the deflection of the battery cell’s lower part decreases obviously. However, the densification region expands with the face-sheet thickness. The deflection and the densification region of the cell’s lower part both increase with the inner core density of the battery. This proposed impact model provides a theoretical guidance for the multi-functional integrated dynamic design of prismatic battery cells. © 2022 Editorial Office of Applied Mathematics and Mechanics. All rights reserved.  相似文献   
35.
碳包覆LiFePO4的一步固相法制备及高温电化学性能   总被引:8,自引:0,他引:8  
Carbon coated LiFePO4 cathode material was synthesized by one-step solid-state reaction and characterized by X-ray diffraction (XRD), field-emission-scanning electron microscope (FESEM). Electrochemical performances of the material as cathode in lithium-ion battery were investigated at medium and elevated temperature (30 and 55 ℃) by galvanostatic charge-discharge and A.C. impedance tests. The results show that carbon coated LiFePO4 powder exhibits a well-crystallized olivine structure and spherical morphology with an average particle size of about 500 nm. Galvanostatic charge-discharge tests show that the reversible discharge capacity at 1 C and 1.5 C rates was improved from 121 and 105 mAh·g-1 at 30 ℃ to 136 and 123 mAh·g-1 at 55℃, respectively, while the enhancement of high temperature on electrochemical performance is less obvious at a rate lower than 0.5 C. Impedance spectra analyses indicate that the cathode material has a remarkably higher lithium-ion diffusivity at 55 ℃ than that at 30 ℃, which improves the electrochemical performance at high temperature.  相似文献   
36.
锂及锂离子蓄电池有机溶剂研究进展   总被引:3,自引:0,他引:3  
从有机溶剂对电池安全性的影响,氧化稳定性,与负极的相容性及对电解液电导率的影响四个方面,论述了锂及锂离子蓄电池有机溶剂的化学和电化学,介绍了碳酸酯类,醚类和羧酸酯类溶剂的性质与电极的相容性及在有机电解液中的应用,对含硫,硼基及胺类有机溶剂等也作了论述。  相似文献   
37.
层状LiMnO2的固相合成及电化学性能   总被引:2,自引:0,他引:2       下载免费PDF全文
以Mn2O3和氢氧化锂为原料,通过焙烧合成出o-LiMnO2。用X射线衍射和扫描电镜对不同温度下合成的粉末样品进行了表征,并研究了材料的电化学性能。通过对不同温度条件下烧结样品的晶胞参数、布拉格(110)晶面峰半高宽及电化学性能研究发现:600 ℃下合成样品的半高宽最大,堆垛层错率高,同时电化学性能也最好,首次放电容量达到156 mAh·g-1,20次循环后仍保持在140 mAh·g-1以上。中高温固相合成的o-LiMnO2材料,在晶粒范围大小相近时,材料电化学性能与材料堆垛层错率相关。  相似文献   
38.
锂离子电池负极合金CoSn和Cu-Sn的制备与表征   总被引:9,自引:0,他引:9  
CoSn alloy and Cu-Sn samples were synthesized by H2-reduction following solid-state reaction between Co(Ⅱ), Cu(Ⅱ), Sn(Ⅳ) and NaOH at ambient temperature. The samples were characterized by XRD, SEM. The results showed that CoSn alloy (80~200nm) is globe-shaped, ultrafine hexagonal material, and Cu-Sn alloy powder consists of two phases, i.e. Cu6Sn5 and Cu3Sn. Cu-Sn powder has spherical morphology and the particle size is estimated to be 60~70nm. The electrochemical performances of CoSn alloy and Cu-Sn powder were studied using lithium-ions model cell Li/LiPF6 (EC+DMC)/CoSn (or Cu-Sn). It was demonstrated the reversible discharge capacities for 10 cycles keep above 280mAh·g-1 for nanophase Cu-Sn, and 60mAh·g-1 for CoSn alloy. Differ-ential capacity plots showed that the reaction mechanisms of Cu-Sn with lithium were reversible.  相似文献   
39.
《中国化学快报》2020,31(4):1030-1033
Herein,a simple yet efficient hydrothermal strategy is developed to in-situ convert multi-layered niobium-based MXene(Nb_2 CT_x) to hierarchical Nb2 CTx/Nb_2O_5 composite.In the hybrid,the Nb_2O_5 nanorods are well dispersed in and/or on the Nb_2 CTx.Thanks to the synergetic contributions from the high capacity of Nb_2O_5 and superb electrical conductivity of the two-dimensional Nb_2 CT_x itself,the resultant Nb_2 CTx/Nb_2O_5 hybrid exhibits excellent rate behaviors and stable long-term cycling behaviors,when evaluated as anodes for Li-ion batteries.  相似文献   
40.
Electrolytic (e) cobalt oxide of a spinel structure, e-Co3O4, is obtained from the sulfate and nitrate (aqueous, water-alcohol) solutions containing Co2+ with the aim of using it in thin-layer anodes of lithium-ion batteries. The physicochemical and structural properties of the synthesized compounds are examined using thermal and x-ray diffraction analyses, absorption IR spectroscopy, and atomic force microscopy. The electrochemical characteristics of e-Co3O4 are determined in breadboards of lithium power sources and in the lithiumion system LiCoO2/e-Co3O4.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号