首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4975篇
  免费   696篇
  国内免费   281篇
化学   3643篇
晶体学   30篇
力学   38篇
综合类   25篇
数学   128篇
物理学   2088篇
  2024年   9篇
  2023年   34篇
  2022年   90篇
  2021年   105篇
  2020年   117篇
  2019年   119篇
  2018年   132篇
  2017年   152篇
  2016年   153篇
  2015年   159篇
  2014年   162篇
  2013年   414篇
  2012年   352篇
  2011年   254篇
  2010年   201篇
  2009年   258篇
  2008年   276篇
  2007年   367篇
  2006年   308篇
  2005年   296篇
  2004年   267篇
  2003年   240篇
  2002年   203篇
  2001年   193篇
  2000年   180篇
  1999年   172篇
  1998年   132篇
  1997年   104篇
  1996年   101篇
  1995年   78篇
  1994年   64篇
  1993年   68篇
  1992年   49篇
  1991年   40篇
  1990年   25篇
  1989年   21篇
  1988年   12篇
  1987年   6篇
  1986年   7篇
  1985年   9篇
  1984年   5篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1979年   2篇
  1977年   3篇
  1974年   5篇
  1972年   1篇
  1971年   2篇
  1957年   1篇
排序方式: 共有5952条查询结果,搜索用时 15 毫秒
971.
Mingli Chen 《Talanta》2009,78(1):88-1591
The separation and speciation of inorganic arsenic(III) and arsenic(V) are facilitated by employing a novel sequential injection system incorporating two mini-columns followed by detection with hydride generation atomic fluorescence spectrometry. An octadecyl immobilized silica mini-column is used for selective retention of the complex between As(III) and APDC, while the sorption of As(V) is readily accomplished by a 717 anion exchange resin mini-column. The retained As(III)-PDC complex and As(V) are effectively eluted with a 3.0 mol L−1 hydrochloric acid solution as stripping reagent, which well facilitates the ensuing hydride generation process via reaction with tetrahydroborate. With a sampling volume of 1.0 mL and an eluent volume of 100 μL for both species, linear ranges of 0.05-1.5 μg L−1 for As(III) and 0.1-1.5 μg L−1 for As(V) are obtained, along with enrichment factors of 7.0 and 8.2, respectively. Precisions of 2.8% for As(III) and 2.9% for As(V) are derived at the concentration level of 1.0 μg L−1. The practical applicability of the procedure has been demonstrated by analyzing a certified reference material of riverine water (SLRS-4), in addition to spiking recovery in a lake water sample matrix.  相似文献   
972.
Metal ion-imprinted polymer particles have been prepared by copolymerization of methacrylic acid as monomer, trimethylolpropane trimethacrylate as cross-linking agent and 2,2′-azobisisobutyronitrile as initiator, in the presence of Hg(II)-1-(2-thiazolylazo)-2-naphthol complex. The separation and preconcentration characteristics of the Hg-ion-imprinted microbeads for inorganic mercury have been investigated by batch procedure. The optimal pH value for the quantitative sorption is 7. The adsorbed inorganic mercury is easily eluted by 2 mL 4 M HNO3. The adsorption capacity of the newly synthesized Hg ion-imprinted microbeads is 32.0 μmol g−1 for dry copolymer. The selectivity of the copolymer toward inorganic mercury (Hg(II)) ion is confirmed through the comparison of the competitive adsorptions of Cd(II), Co(II), Cu(II), Ni(II), Pb(II), Zn(II)) and high values of the selectivity and distribution coefficients have been calculated. Experiments performed for selective determination of inorganic mercury in mineral and sea waters showed that the interfering matrix does not influence the extraction efficiency of Hg ion-imprinted microbeads. The detection limit for inorganic mercury is 0.006 μg L−1 (3σ), determined by cold vapor atomic adsorption spectrometry. The relative standard deviation varied in the range 5-9 % at 0.02-1 μg L−1 Hg levels. The new Hg-ion-imprinted microbeads have been tested and applied for the speciation of Hg in river and mineral waters: inorganic mercury has been determined selectively in nondigested sample, while total mercury e.g. sum of inorganic and methylmercury, has been determined in digested sample.  相似文献   
973.
The coprecipitation method using indium phosphate as a new coprecipitant has been developed for the separation of trace elements in table salts prior to their determination using inductively coupled plasma atomic emission spectrometry (ICP-AES). Indium phosphate could quantitatively coprecipitate 27 trace elements, namely, Be, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, Pb, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, in a table salt solution at pH 10. The rapid coprecipitation technique, in which complete recovery of the precipitate was not required in the precipitate-separation process, was completely applicable, and, therefore, the operation for the coprecipitation was quite simple. The coprecipitated elements could be determined accurately and precisely by ICP-AES using indium as an internal standard element after dissolution of the precipitate with 5 mL of 1 mol L−1 nitric acid. The detection limits (three times the standard deviation of the blank values, n = 10) ranged from 0.001 μg (Lu) to 0.11 μg (Zn) in 300 mL of a 10% (w/v) table salt solution. The method proposed here could be applied to the analyses of commercially available table salts.  相似文献   
974.
In this work, a non-chromatographic procedure for the on-line determination of ultratraces of V(V) and V(IV) is presented. The method involves a solid phase extraction-flow injection system coupled to electrothermal atomic absorption spectrometry (SPE-FI-ETAAS). The system holds two microcolumns (MC) set in parallel and filled with lab-made mesoporous silica functionalized with 3-aminopropyltriethoxy silane (APS) and mesoporous silica MCM-41, respectively. The pre-concentration of V(V) is performed by sorption onto the first MC (C1) filled with APS at pH 3, whilst that of V(IV) is performed by sorption onto the second column (C2) filled with mesoporous silica MCM-41 at pH 5. Aqueous samples containing both analytes are loaded and, after pre-concentration (pre-concentration factor PCF = 10, sorption flow rate = 1 mL min−1, sorption time = 10 min), they are eluted in separate vessels with hydroxylammonium chloride (HC) 0.1 mol L−1 in HCl 0.5 mol L−1 (elution volume = 1 mL, elution flow rate = 0.5 mL min−1). Afterwards, both analytes are determined through ETAAS with graphite furnace. Under optimized conditions, the main analytical figures of merit for V(V) and V(IV) are, respectively: detection limits (3 s): 0.5 and 0.6 μg L−1, linear range: 2-100 μg L−1 (both analytes), sensitivity: 0.015 and 0.013 μg−1 L and sample throughput: 6 h−1 (both analytes). Recoveries of both species were assayed in different water samples. Validation was performed through certified reference materials for ultratraces of total vanadium in river water.  相似文献   
975.
采用氢化物原子荧光法测定了益智种植区土壤与益智各部位中的痕量汞,比较了HNO3+HF+H2O2、HNO3+HF、HNO3+HClO43种混酸消解体系的消解效果。结果表明,HNO3+HF+H2O2为最佳消解体系;样品加标回收率为93.70%~102.25%;土壤及益智果实、根、茎、叶中汞含量分别为0.3583、0.1632、0.0950、0.0700、0.0747mg·kg^-1,土壤中汞在益智果实、根、茎、叶间的迁移率分别为45.55%、26.51%、19.52%、20.83%,土壤及益智各部位的汞含量均在国家规定标准以内。说明海南益智种植区地理环境良好,未受到汞污染。  相似文献   
976.
采用王水(1+1)水浴分解样品,氢化物发生-原子荧光光谱法(HG-AFS)测定金矿石中高含量的锑.其方法回收率在95.0%-102.0%之间,相对标准偏差在1.0%-3.4%之间,方法检出限为3.0×10-10g/mL,经试验证实该方法可测范围宽、简便、快速、准确,实验室间对比分析结果吻合程度令人满意.  相似文献   
977.
对全国各地用原子吸收光谱仪测定10批次大活络丸中12种无机元素及建立的指纹图谱,尝试用成分数据分析法、向量相似法和模糊聚类法建立全国无机元素的指纹图谱和中药质量控制标准方法,获得较满意的结果。研究表明,建立无机元素指纹图谱控制中成药中无机元素的质量,具有很好的实用性和可操作性,用于全国各地不同厂家生产的大活络丸无机元素的质量控制是切实可行的。  相似文献   
978.
为测定九管血的不同部位Fe、Cu、Mn、Zn的含量,样品用V(HNO3)+V(HClO4)=4+l进行消化处理,然后在实验选定的最佳工作条件下,用火焰原子吸收光谱法(FAAS)对九管血不同部位的Fe、Cu、Mn、Zn微量元素进行测定。结果表明,九管血根、茎、叶、籽中微量元素含量丰富,其中Fe含量最高,Cu含量最低,为九管血药效的进一步研究和资源综合开发利用提供一定的科学依据。  相似文献   
979.
提出了微波消解-火焰原子吸收光谱法测定黄芪中的八种金属元素含量的方法.实验确定微波消解试样的最佳条件为:HNO_3与HClO_4体积比是4∶1,微波功率为600 W、时间为3 min.实验结果表明:黄芪中含有较丰富Ca、Mg、Fe,Cu、Zn、Mn含量较低,而Pb、Cr未测出.测定的相对标准偏差小于5.4%,加标回收率为93.6%~105.2%.  相似文献   
980.
探讨了使用微波灰化技术消化原油和成品油样品,并使用氢化物发生-原子荧光光谱法测定其中铅和砷的含量.研究了铅测定的灰化保护剂和砷测定的灰化助剂,并优化了仪器工作条件和实验条件.该方法测定原油和重油中铅的平均回收率分别为96.8%和96.7%,相对标准偏差分别为1.03%和0.93%;测定原油和重油中砷的平均回收率分别为90.0%和90.3%,相对标准偏差分别为2.39%和2.63%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号