首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   278篇
  免费   20篇
  国内免费   1篇
化学   4篇
晶体学   14篇
物理学   281篇
  2019年   1篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2010年   9篇
  2009年   60篇
  2008年   60篇
  2007年   51篇
  2006年   41篇
  2005年   11篇
  2004年   4篇
  2003年   17篇
  2002年   13篇
  2001年   7篇
  2000年   3篇
  1999年   3篇
  1998年   3篇
  1996年   1篇
  1995年   1篇
  1993年   2篇
  1989年   2篇
  1988年   1篇
  1985年   1篇
  1981年   1篇
  1977年   1篇
排序方式: 共有299条查询结果,搜索用时 67 毫秒
61.
We investigate the electronic structures of new semiconductor alloys BxGa1-xAs and TlxGa1-xAs, employing first-principles calculations within the density-functional theory and the generalized gradient approximation. The calculation results indicate that alloying a small TI content with GaAs will produce larger modifications of the band structures compared to B. A careful investigation of the internal lattice structure relaxation shows that significant bond-length relaxations takes place in both the alloys, and it turns out that difference between the band-gap bowing behaviours for B and TI stems from the different impact of atomic relaxation on the electronic structure. The relaxed structure yields electronic-structure results, which are in good agreement with the experimental data. Finally, a comparison of formation enthalpies indicates that the production Tlx Ga1-xAs with TI concentration of at least 8% is possible.  相似文献   
62.
An apparatus for characterization of polycrystalline materials based on conductive atomic torce microscopy (cAFM) is developed and a quantitative measurement of electrical characteristics of individual grains in polycrystalline ZnO ceramic is demonstrated. Improvement of the experimental method is presented. Experimental results illuminate unambiguously the different electrical characteristics between individual grains, suggesting the suitability and maneuverability of this method in the study of local structure or properties and their relationship in polycrystalline materials such as semi-conducting ceramics.  相似文献   
63.
Newly synthesized reference MgLaLiSi2O7 and red luminescent Eu3+:MgLaLiSi2O7 powder phosphors have been successfully developed by a solid-state reaction method to analyze their emission and structural properties from the measurement of their XRD, SEM, FTIR and PL spectra. Emission spectra of Eu3+ powder phosphors have shown strong red emissions at 613 nm (5D07F2). These phosphors have also shown bright red emissions under a UV source. Based on the red emission performance, the Eu3+ concentration has been optimized to be at 0.3 mol%.  相似文献   
64.
The MgO (2 0 0) surface is widely used as a substrate for epitaxial growth of superconducting and ferro-electric films. Highly oriented, single crystalline, extremely flat and transparent MgO films have been successfully deposited on quartz substrates by the chemical spray pyrolysis technique using economically viable metal organic and inorganic precursors under optimized conditions at the substrate temperature of 600 °C. Thermal analysis (TGA/DTA) in the temperature range 30-600 °C with the heating rate of 10 °C/min revealed the decomposition behavior of the precursors and confirmed the suitable substrate temperature range for film processing. The heat of reaction, ΔH due to decomposition of metal organic precursor contributed additional heat energy to the substrate for better crystallization. The intensity of the (2 0 0) peak in X-ray diffraction (XRD) measurements and the smooth surface profiles revealed the dependency of precursor on film formation. The compositional purity and the metal-oxide bond formation were tested for all the films. UV-Vis-NIR optical absorption in the 200-1500 nm range revealed an optical transmittance above 80% and the absorption edge at about 238 nm corresponding to an optical band gap Eg = 5.25 eV. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) micrographs of MgO films confirmed better crystallinity with larger grain size (0.85 μm) and reduced surface roughness (26 nm), respectively.  相似文献   
65.
We study the structural properties of the surface roughness, the surface mound size and the interfacial structure in Ni thin films vacuum-deposited on polyethylene naphthalate (PEN) organic substrates with and without the application of magnetic field and discuss its feasibility of fabricating quantum cross (QC) devices. For Ni/PEN evaporated without the magnetic field, the surface roughness decreases from 1.3 nm to 0.69 nm and the surface mound size increases from 32 nm to 80 nm with the thickness increased to 41 nm. In contrast, for Ni/PEN evaporated in the magnetic field of 360 Oe, the surface roughness tends to slightly decrease from 1.3 nm to 1.1 nm and the surface mound size shows the almost constant value of 28-30 nm with the thickness increased to 35 nm. It can be also confirmed for each sample that there is no diffusion of Ni into the PEN layer, resulting in clear Ni/PEN interface and smooth Ni surface. Therefore, these experimental results indicate that Ni/PEN films can be expected as metal/insulator hybrid materials in QC devices, leading to novel high-density memory devices.  相似文献   
66.
To obtain metallic nanofingers applicable in surface acoustic wave (SAW) sensors, a mechano-chemical atomic force microscope (AFM) nanolithography on a metallic thin film (50 nm in thickness)/piezoelectric substrate covered by a spin-coated polymeric mask layer (50-60 nm in thickness) was implemented. The effective shape of cross-section of the before and after etching grooves have been determined by using the AFM tip deconvolution surface analysis, structure factor, and power spectral density analyses. The wet-etching process improved the shape and aspect ratio (height/width) of the grooves and also smoothed the surface within them. We have shown that the relaxed surface tension of the polymeric mask layer resulted in a down limitation in width and length of the lithographed nanofingers. The surface tension of the mask layer can be changed by altering the initial concentration of the polymer in the deposition process. As the surface tension reduced, the down limitation decreased. In fact, an extrapolation of the analyzed statistical data has indicated that by decreasing the surface tension from 39 to 10 nN/nm, the minimum obtainable width and length of the metallic nanofingers was changed from about 55 nm and 2 μm to 15 nm and 0.44 μm, respectively. Using the extrapolation’s results, we have shown that the future SAW sensors buildable by this nanolithography method possess a practical bound in their synchronous frequency (∼58 GHz), mass sensitivity (∼6125 MHz-mm2/ng), and the limit of mass resolution (∼4.88 × 10−10 ng/mm2).  相似文献   
67.
Titanium films were deposited on glass substrates at room temperature by direct current (dc) magnetron sputtering at fixed Ar pressure of 1.7 Pa and sputtering time of 4 min with different sputtering power ranging from 100 to 300 W. Atomic force microscopy (AFM) was used to study topographic characteristics of the films, including crystalline feature, grain size, clustering and roughening. The amorphous-like microstructure feature has been observed at 100-150 W and the transition of crystal microstructure from amorphous-like to crystalline state occurs at 200 W. The increase in grain size of Ti films with the sputtering power (from 200 to 300 W) has been confirmed by AFM characterization. In addition, higher sputtering power (300 W) leads to the transformation of crystal texture from globular-like to hexagonal type. The study has shown that higher sputtering power results in the non-linear increase in deposition rate of Ti films. Good correlativity between the surface roughness parameters including root mean square (RMS) roughness, surface mean height (Ra) and maximum peak to valley height (P-V) for evaluating the lateral feature of the films has been manifested. Surface roughness has an increasing trend at 100-250 W, and then drops up to 300 W.  相似文献   
68.
In this work, the results of synthesis and characterization of single wall carbon nanotubes (SWCNTs) functionalized by two surfactants (sodium dodecylbenzene sulfonate and melamine sulfonate superplasticiser) have been presented. The properties of pristine and modified SWCNTs have been compared by different techniques: Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). Raman analysis reveals the changes in vibrational spectra of SWCNTs after modification by different surfactant molecules. FTIR analysis has shown the presence of sulfonate group which is strong evidence for nanotube modification. AFM analysis has shown separation of big single wall carbon nanotube bundles into thin bundles of them.  相似文献   
69.
Geometric and electronic properties of ordered copper phthalocyanine (CuPc) thin films grown on hydrogen- and antimony-passivated Si(1 1 1) surfaces have been studied using near edge X-ray absorption fine structure (NEXAFS) and photoemission spectroscopy. The H- and Sb-passivations of vicinal Si surfaces resulted in different molecular orientations in thick films, namely upright and near lying molecules, respectively. In the absence of the vicinality, the molecules on the Sb-passivated surface changed towards upright orientation. The work function of the films was monitored during the growth and correlated with the molecular orientation.  相似文献   
70.
Laser beam micromachining was applied to super-hard nano-polycrystalline diamond (NPD) synthesized by the direct conversion of graphite at high pressure and high temperature. Three types of pulsed lasers were tested: nanosecond near-infrared, nanosecond near-ultraviolet, and femtosecond near-infrared lasers. The latter two were also applied for synthetic single crystal of diamond to compare the results with those of the NPD. It was demonstrated that the nanosecond near-infrared laser was the most efficient device for rough shaping of the NPD, while the ultraviolet and femtosecond lasers give satisfactory results for precise surface finishing of it. The properties of the laser-processed surfaces were analyzed by scanning and transmission electron microscopy, laser scanning microscopy, and micro Raman spectroscopy. These analyses demonstrated that the three types of lasers play different and complementary roles, and that their combination is the best suitable solution for micromachining of the hardest diamond into any desired shapes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号