首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   298篇
  免费   0篇
  国内免费   119篇
化学   381篇
晶体学   1篇
力学   1篇
数学   2篇
物理学   32篇
  2022年   1篇
  2021年   2篇
  2020年   4篇
  2019年   3篇
  2018年   4篇
  2017年   9篇
  2016年   7篇
  2015年   1篇
  2014年   9篇
  2013年   44篇
  2012年   16篇
  2011年   15篇
  2010年   18篇
  2009年   32篇
  2008年   22篇
  2007年   31篇
  2006年   16篇
  2005年   22篇
  2004年   21篇
  2003年   14篇
  2002年   21篇
  2001年   10篇
  2000年   10篇
  1999年   7篇
  1998年   6篇
  1997年   8篇
  1996年   4篇
  1995年   8篇
  1994年   12篇
  1993年   5篇
  1992年   4篇
  1991年   5篇
  1990年   8篇
  1989年   7篇
  1988年   5篇
  1987年   6篇
排序方式: 共有417条查询结果,搜索用时 218 毫秒
31.
橡胶接枝苯乙烯本体聚合的研究目前主要集中于预聚阶段接枝动力学和聚合条件对相转变的影响[1]. 对于后聚阶段, 即相转变后的接枝行为, 尤其是接枝率与橡胶相内包容物的关系、接枝率与高转化率聚合动力学的关系, 接枝率与橡胶相结构的关系等则研究很少. 这些因素对最终聚合物的性能起着至关重要的作用, 因此, 研究橡胶接枝苯乙烯本体聚合相转变以后接枝率的变化, 并找出橡胶相形态演绎过程的规律很有意义.  相似文献   
32.
The graft copolymers of chitosan with polycaprolactone (PCL) were prepared through a protection-graft-deprotection route using phthaloylchitosan as intermediate. PCL macromonomers terminated with isocyanate groups reacted with hydroxyl groups of phthaloyl-protected chitosan regioselectively, and then phthaloyl groups were deprotected to give the free amino groups. The graft reaction was carried out in homogeneous system and yielded copolymers with high grafting content due to solubilization. FTIR, NMR and XRD were detected to characterize the resultant chitosan-graft-PCL copolymers.  相似文献   
33.
提供了三元乙丙橡胶(EPDM)交联的一种方法.以二甲苯为溶剂,溶液法制备马来酸酐(MAH)接枝EPDM,然后向溶液中加入适量碳酸钙(CaCO3),与已接枝的马来酸酐(MAH)反应.待反应完全后,滴加丙酮作为沉淀剂,沉淀物真空干燥,制得EPDM-g-MAH/CaCO3弹性体复合材料.溶解、溶胀及拉伸性能测试结果表明,复合材料样品已形成有效的交联,且材料的抗张强度、断裂伸长率和模量均得到较大幅度的提高,当CaCO3含量达到体系总重的20%时,复合材料呈现最佳力学性能.上述实验结果是因为碱性的CaCO3的Ca2+可以与接枝在EPDM上的MAH发生配合反应,进而成为EPDM的交联中心,形成有效交联,从而促进了EPDM机械性能的提高,ATR-FTIR和TGA的测试结果被用于证实上述观点.  相似文献   
34.
Recycling of mixed plastic wastes composed of low-density polyethylene (LDPE) matrix and polypropylene (PP) was carried out by compounding using single-screw or twin-screw extruders. Blends of virgin polymers have been prepared to compare mechanical properties of both virgin and regenerated materials. First, a model composition of virgin LDPE/PP blend was prepared to study the effect of process parameters and that of different types of compatibilizers. Second, the results were applied to plastic wastes coming from industrial post-consumer plastic wastes. By adding compatibilizing agents such as ethylene-propylene-diene monomer, ethylene-propylene monomer, or PE-g-(2-methyl-1,3-butadiene) graft copolymer, elongation at break and impact strength were improved for all blends. The effect of these various copolymers is quite different and is in relation with their chemical structure. The recycled blends exhibit suitable properties leading to applications that require good mechanical properties.  相似文献   
35.
A super-absorbent polymer is prepared by graft polymerizing acrylamide (AM) ontopotato starch using ceric ammonium nitrate (CAN) and N, N′-methylene-bis-acrylamide(bisAM) as an initiator and cross-linking agent respectively, and then subjecting the potatostarch-poly(acrylamide) (PAM) graft copolymer (SPAM ) to alkaline saponification. Thewater absorbency (WA) of the sample is nearly 5000 g H_2O/g for dry sample in 24 hat room temperature and is far larger than that of reported in the literature. Thevariables affecting the WA were investigated and optimized, they were: concentrations ofpotato starch, AM, CAN and bisAM were 26.3 g/L, 1.14 mol/L, 10.3 mmol/L and 0.53mmol/L, respectively. The amount of sodium hydroxide was 15 g and the temperatures ofgraft copolymerization and saponification reactions were 60℃ and 95℃. The time of graftcopolymerization and saponification reactions was 2 h, respectively.  相似文献   
36.
分散共聚法制备特殊形态高分子微球的研究   总被引:3,自引:2,他引:3  
以聚乙二醇 (PEG)大分子单体为反应性稳定剂 ,在丙烯腈的分散共聚反应中添加少量苯乙烯以形成疏水性核 ,制备得到了亚微米级高分子微球 .透射电子显微镜研究表明 ,该高分子微球具有特异的形态结构 .同时研究了分散共聚体系中各种反应因素对微球形态和直径的影响 ,结果表明 ,苯乙烯单体的添加量、PEG大分子单体的浓度及分子量、混合溶剂的组成对微球直径和形态均有明显的影响 .X 射线光电子能谱 (XPS)研究结果表明 ,微球表面聚集有亲水性PEG链 ,核为疏水的聚 (丙烯腈 苯乙烯 ) ,即形成的特异形态的PEG接枝高分子微球亦为复合型结构  相似文献   
37.
Graft copolymer of natural rubber and poly(methyl methacrylate) (NR‐g‐PMMA) was prepared using semi‐batch emulsion polymerization technique via bipolar redox initiation system. It was found that the grafted PMMA increased with the increase of methyl methacrylate (MMA) concentration used in the graft copolymerization. The NR‐g‐PMMA was later used to prepare thermoplastic vulcanizates (TPVs) by blending with PMMA through dynamic vulcanization technique. Conventional vulcanization (CV) and efficient sulphur vulcanization (EV) systems were studied. It was found that the CV system provided polymer melt with lower shear stress and viscosity at a given shear rate. This causes ease of processability of the TPVs via extrusion and injection molding processes. Furthermore, the TPVs with the CV system showed higher ultimate tensile strength and elongation. The results correspond to the morphological properties of the TPVs. That is, finer dispersion of the small vulcanized rubber particles were observed in the PMMA matrix. Various blend ratios of the NR‐g‐PMMA/PMMA blends using various types of NR‐g‐PMMA (i.e. prepared using various percentage molar ratios of NR and MMA) were later studied via dynamic vulcanization by a conventional sulphur vulcanization system. It was found that increasing the level of PMMA caused increasing trend of the tensile strength and hardness properties but decreasing level of elongation properties. Increasing level of the grafted PMMA in NR molecules showed the same trend of mechanical properties as in the case of increasing concentration of PMMA used as a blend component. From morphological studies, two phase morphologies were observed with a continuous PMMA phase and dispersed elastomeric phase. It was also found that more finely dispersed elastomeric phase was obtained with increasing the grafted PMMA in the NR molecules. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
38.
The novel amphiphilic graft copolymers with hydrophilic hard polar hydroxypropyl cellulose(HPC) backbone and hydrophobic soft nonpolar polyisobutylene(PIB) branches have been successfully synthesized through nucleophilic substitution reaction of living PIB chains carrying oxonium ions with the-OH groups along HPC backbone. The PIB branch length in the graft copolymers could be designed by living cationic polymerization and the grafting density could be adjusted by PIB~+/-OH molar ratio. The living PIB chains carrying oxonium ion were prepared by transformation of allyl bromide end groups in the presence of AgClO_4 and silver nanoparticles(3.2±0.3 nm, 0.7 wt%-1.8 wt%)generated in situ from AgBr. The phase-separation morphology was formed in the graft copolymers due to their incompatibility between backbone and branches. The hydrophilicity on the surface of graft copolymer films could be turned to hydrophobicity by increasing grafting density or/and length of PIB branches. The soft PIB segments in graft copolymers provided an unique surface via self-assembly for anti-protein adsorption against bovine serum albumin. A small amount of Ag nanoparticles in the copolymers contributed to good antibacterial activities against Staphylococcus aureus or Escherichia coli.  相似文献   
39.
The physical properties of PVC depend on two fundamental parameters, which are influenced by thermal history: free volume and crystallinity. This is demonstrated by DSC, sorption, low strain and ultimate mechanical properties.  相似文献   
40.
This article reviews recent topics on the polymerization of substituted acetylenes, focusing on the synthesis of poly(diphenylacetylenes) and the living polymerization of phenylacetylenes. Diphenylacetylene (DPA) polymerizes with TaCls-n-Bu4Sn to give a polymer which is thermally very stable but insoluble in any solvents. DPAs with various groups (e.g.,p-Me3Si,m-Me3Ge, p-t-Bu,and_p-PhO) polymerize similarly. These polymers are soluble and their M¯w's reach 1 × 106 to 3 × 106. Some of them are more gas-permeable than poly(dimethylsiloxane). Several acetylenes (e.g., ClC -n-C6H13 and HCUC-t-Bu) have been found to undergo living polymerization with MoOCl4-n-Bu4Sn-EtOH. Whereas phenylacetylene (PA) does not polymerize in a living fashion, ortho-substituents in PA more or less suppress termination and chain transfer. PAs with bulky ortho groups (e.g., CF3 and Me3Ge) especially undergo virtually ideal living polymerization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号