首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2705篇
  免费   140篇
  国内免费   412篇
化学   3124篇
力学   20篇
综合类   13篇
数学   1篇
物理学   99篇
  2024年   2篇
  2023年   19篇
  2022年   20篇
  2021年   28篇
  2020年   51篇
  2019年   35篇
  2018年   53篇
  2017年   81篇
  2016年   97篇
  2015年   69篇
  2014年   90篇
  2013年   299篇
  2012年   119篇
  2011年   134篇
  2010年   124篇
  2009年   160篇
  2008年   174篇
  2007年   175篇
  2006年   159篇
  2005年   168篇
  2004年   180篇
  2003年   122篇
  2002年   120篇
  2001年   106篇
  2000年   93篇
  1999年   95篇
  1998年   75篇
  1997年   74篇
  1996年   53篇
  1995年   40篇
  1994年   55篇
  1993年   69篇
  1992年   46篇
  1991年   22篇
  1990年   14篇
  1989年   12篇
  1988年   9篇
  1987年   5篇
  1986年   4篇
  1985年   1篇
  1983年   1篇
  1982年   3篇
  1979年   1篇
排序方式: 共有3257条查询结果,搜索用时 306 毫秒
71.
利用大分子单体技术合成接枝共聚物   总被引:9,自引:0,他引:9  
大分子单体和小分子共单体共聚是合成接枝共聚物的重要途径之一。本文综述了大分子单体通过各种聚合方式(自由基共聚、离子型共聚、配位共聚、基团转移共聚和逐步共聚)和普通小分子单体的共聚反应,详细讨论了大分子单体和小分子单体的自由基共聚反应动力学,并简要介绍了接枝共聚物的应用背景。  相似文献   
72.
Polymer colloids based on 3‐O‐methacryloyl‐1,2:5,6‐di‐O‐isopropylidene‐α‐D ‐glucofuranose (3‐MDG) and butyl acrylate (BA) were prepared via free radical mini‐emulsion polymerization. The kinetic and colloidal features of the copolymerization were investigated. The final particle size (D) of the sugar latexes is inversely proportional to the concentration of the anionic emulsifier (sodium dodecyl sulphate, SDS) and the non‐ionic one (alkyl polyglucoside, APG). It was also found that D is independent of the concentration of either the water‐soluble initiator (potassium persulfate, KPS), or the oil‐soluble initiator (2,2′‐azobisisobutyronitrile, AIBN). The rate of mini‐emulsion polymerization is lower in comparison with the conventional emulsion polymerization under the same conditions. The polymerization rate (Rp) and the total number of particles (Np) are proportional to the 0.72th and 0.93th power of the SDS, and to the 1.40th and 2.22th of the APG concentration. Following reaction orders, 0.79/0.06 were obtained for Rp/Np versus the concentration of KPS, and 0.22/?0.01 for AIBN, respectively. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
73.
唐宏科  陈琦 《合成化学》2007,15(5):643-646
以过硫酸铵为引发剂,N,N-亚甲基双丙烯酰胺为交联剂,淀粉与丙烯酸/醋酸乙烯酯混合单体通过接枝共聚,制备了吸水及耐盐性能均较好的淀粉接枝丙烯酸/醋酸乙烯酯高吸水性树脂(CGAV)。最佳工艺条件为:淀粉10.0 g,m(混合单体)∶m(淀粉)=4∶1,w(引发剂)=0.3%,w(交联剂)=0.05%,于45℃反应2h~3 h。在最佳工艺条件下制得的CGAV吸去离子水率760 g.g-1,吸0.9%NaC l水溶液率68 g.g-1。  相似文献   
74.
The copolymerization of acrylonitrile (AN) in dimethylformamide (DMF) was retarded by the presence of itaconic acid (IA) comonomer. Addition of TEA helped overcome the retardation at enhanced concentrations of IA in the feed. The monomer reactivity ratios determined by both terminal and penultimate models revealed that the overall monomer reactivity’s are practically unaffected by the presence of TEA. The penultimate-unit effect for radicals terminated in AN was enhanced by the presence of TEA. Higher TEA concentrations helped regain the reactivities of AN and IA to AN-radical to the state in pure DMF. The penultimate model could explain the feed-copolymer composition profile for the whole range. Whereas IA systematically retarded the polymerization rate at all concentration regime in DMF, it increased the rate at higher IA concentration in DMF/TEA system. For a given IA concentration, the polymerization rate decreased as the solvent is enriched in TEA. The copolymers synthesized in the presence of TEA, manifested higher cyclization temperature and consequently lower char residue, attributed to the incorporation of TEA in the polymer by means of salt formation with IA moiety camouflaging the catalytic effect of the -COOH group in cyclization reaction. 13C-NMR studies confirmed the incorporation of the TEA molecules in the polymer chain.  相似文献   
75.
In this paper, the surface imprinted cross-linked polystyrene beads were prepared via suspension polymerization with styrene (St), divinylbezene (DVB), polyvinyl alcohol (PVA1788),the mixture of Span 85 and xylene or the mixture of Span 85 and paraffin as monomer,cross-linking agent, dispersion stabilizer and templates, respectively. The results indicate that there are dense cavities on the surface of beads, and the diameter and density of cavity are related with the composition and amount of emulsion template. The forming mechanism of cavity from thermodynamics and dynamics was proposed.  相似文献   
76.
 The interaction of a nonionic polymeric surfactant with an anionic surfactant at the oil–water interface has been studied by its effects on the droplet size, stability and rheology of emulsions. Oil-in-water (o/w) emulsions were prepared using isoparaffinic oil and mixtures of a nonionic polymeric surfactant with an anionic surfactant. The macro-molecular surfactant was a graft copolymer with a backbone of polymethyl methacrylate and grafted polyethylene oxide (a graft copolymer with PEO chains of MW=750). The anionic surfactant was sodium dodecyl sulfate (SDS). The stabiliza-tion of the emulsion droplets was found to be different when using one or the other surfactant. The mechanism of stabilization of emulsion droplets by the macro-molecular surfactant is of the steric type while the stabilization by anionic surfactant is of the electrostatic repulsion type. Emulsions stabilized with mixtures present both types of stabilization. Other effects on the preparation and stabilization of emulsions were found to be dependent on properties associated with the surfactant molecular weight such as the Marangoni effect and Gibbs elasticity. The initial droplet size of the emulsions showed a synergistic effect of the surfactant combination, showing a minimum for the mixtures compared to the pure components. Emulsion stability also shows a synergistic interaction of both surfactants. Rheological measurements allow for the estimation of the interparticle interaction when measured as a function of volume fraction. Most of the effects observed can be attributed to the differences in interfacial tension and droplet radius produced by both surfactants and their mixtures. The elastic moduli are well explained on the basis of droplet deformation. Ionic versus steric stabilization produce little difference in the observed rheology, the only important differences observed concerned the extent of the linear viscoelasticity region. Received: 22 November 1996 Accepted: 24 March 1997  相似文献   
77.
对乙烯机型染料在较高浓度下与丙烯腈溶液共聚合反应合成高分子染料进行了研究.考察了单体组成对聚合转化率、共聚组成和共聚物分子量的影响,合成了共聚组成中染料单体含量为37%的高分子染料.  相似文献   
78.
刘胜生  于广谦 《应用化学》1996,13(4):110-112
茂锆载体催化剂下的乙烯/辛烯共聚及聚合物的~(13)CNMR研究刘胜生,于广谦,黄葆同(中国科学院长春应用化学研究所长春130022)关键词茂锆载体催化剂,共聚,序列分布,~(13)CNMR由于茂锆催化剂具有高活性,单一活性中心等特点[1,2],并且能...  相似文献   
79.
Perrin  P.  Monfreux  N.  Dufour  A. L.  Lafuma  F. 《Colloid and polymer science》1998,276(10):945-948
Highly hydrophobically modified (with n-dodecylamide chain) linear poly(acrylic acid)s (HHMPAAH) and poly(sodium acrylate)s (HHMPAANa) with various degrees of grafting (τ) were synthesized and used as emulsifiers of the n-dodecane/water system. The type of emulsion, oil in water (O/W) or water in oil (W/O), was investigated as a function of the polymer chemical structure (τ, salt or acid form of the copolymer) and aqueous phase electrolyte concentration (NaNO3). Increasing τ and/or salt concentration was found to favor the formation of inverse emulsions. Direct liquid–liquid dispersions are more likely to form with poly(sodium acrylate)s than with poly(acrylic acid)s. Hence, field variables such as τ, pH and ionic strength are relevant parameters to control emulsion type. Moreover, a balanced polyelectrolyte neither soluble in oil nor in water was synthesized for the first time. With this original emulsifier, the dispersion type was found to change from O/W to W/O with polymer salting out. The work provides convenient model system for fundamental studies of polymer conformation at liquid–liquid interfaces. Received: 31 March 1998 Accepted: 30 April 1998  相似文献   
80.
采用含偶氮基的聚苯乙烯预聚物(PS ACPC)作为引发剂,合成了苯乙烯(St)分别与甲基丙烯酸(MAA)、甲基丙烯酸(β 羟丙酯)(HPMA)的嵌段共聚物,考察了PS ACPC引发第二单体的聚合反应行为,以及影响第二单体转化率和均聚物含量、共聚物组成的因素.用溶解性、凝胶渗透色谱(GPC)、红外光谱(IR)、核磁共振(NMR)、动态接触角(DCA)等表征了嵌段共聚物.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号