首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   914篇
  免费   187篇
  国内免费   39篇
化学   251篇
晶体学   9篇
力学   149篇
综合类   21篇
数学   128篇
物理学   582篇
  2024年   3篇
  2023年   9篇
  2022年   19篇
  2021年   23篇
  2020年   42篇
  2019年   25篇
  2018年   23篇
  2017年   49篇
  2016年   43篇
  2015年   26篇
  2014年   51篇
  2013年   89篇
  2012年   57篇
  2011年   54篇
  2010年   44篇
  2009年   49篇
  2008年   68篇
  2007年   59篇
  2006年   71篇
  2005年   47篇
  2004年   41篇
  2003年   29篇
  2002年   24篇
  2001年   21篇
  2000年   41篇
  1999年   19篇
  1998年   18篇
  1997年   24篇
  1996年   9篇
  1995年   13篇
  1994年   16篇
  1993年   6篇
  1992年   9篇
  1991年   4篇
  1990年   2篇
  1989年   3篇
  1988年   6篇
  1987年   2篇
  1985年   1篇
  1979年   1篇
排序方式: 共有1140条查询结果,搜索用时 15 毫秒
11.
Recent developments in quantitative surface analysis by Auger (AES) and x-ray photoelectron (XPS) spectroscopies are reviewed and problems relating to a more accurate quantitative interpretation of AES/XPS experimental data are discussed. Special attention is paid to consideration of elementary physical processes involved and influence of multiple scattering effects on signal line intensities. In particular, the major features of core-shell ionization by electron impact, Auger transitions and photoionization are considered qualitatively and rigorous approaches used to calculate the respective transition probabilities are analysed. It is shown that, in amorphous and polycrystalline targets, incoherent scattering of primary and signal Auger and photoelectrons can be described by solving analytically a kinetic equation with appropriate boundary conditions. The analytical results for the angular and energy distribution, the mean escape depth, and the escape probability as a function of depth of origin of signal electrons as well as that for the backscattering factor in AES are in good agreement with the corresponding Mote Carlo simulation data. Methods for inelastic background subtraction, surface composition determination and depth-profile reconstructions by angle-resolved AES/XPS are discussed. Examples of novel techniques based on x-ray induced photoemission are considered.  相似文献   
12.
We have developed multiple short‐period delta layers as a reference material for SIMS ultra‐shallow depth profiling. Boron nitride delta layers and silicon spacer layers were sputter‐deposited alternately, with a silicon spacer thickness of 1–5 nm. These delta‐doped layers were used to measure the sputtering rate change in the initial stage of oxygen ion bombardment. A significant variation of sputtering rate was observed in the initial 3 nm or less. The sputtering rate in the initial 3 nm was estimated to be about four times larger than the steady‐state value for 1000 eV oxygen ions. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
13.
18O/16O isotope exchange depth profiling (IEDP) combined with secondary ion mass spectrometry (SIMS) has been used to measure the oxygen tracer diffusivity of SrCe0.95Yb0.05O3– between 800 °C and 500 °C at a nominal pressure of 200 mbar. The values of D* (oxygen tracer diffusion coefficient) and k (surface exchange coefficient) increase steadily with increasing temperature, and the activation energies are 1.13 eV and 0.96 eV, respectively. Oxygen ion conductivities have been calculated using the Nernst–Einstein equation. The transport number for oxide ions at 769 °C, the highest temperature studied, is only ~0.05. Moreover, SrCe0.95Yb0.05O3– has been studied using impedance spectroscopy under dry O2, wet O2 and wet H2 (N2/10% H2) atmospheres, over the range 850–300 °C. Above ~550 °C, SrCe0.95Yb0.05O3– shows higher conductivity in dry O2 than in wet O2 or wet H2; below that temperature the results obtained for the three atmospheres are comparable. Dry O2 shows the highest activation energy (0.77 eV); the activation energies for wet O2 and wet H2 are identical (0.62 eV).Abbreviations HTPC high-temperature proton conductor - IEDP isotope exchange depth profiling - SIMS secondary ion mass spectrometryPresented at the OSSEP Workshop Ionic and Mixed Conductors: Methods and Processes, Aveiro, Portugal, 10–12 April 2003  相似文献   
14.
From large‐scale production, two monocrystalline silicon solar cells of different quality, i.e. ISC = 3.0 A (good cell) and ISC = 1.6 A (bad cell), have been studied by XPS combined with 4 keV Ar+ depth profiling. Depth profiling was carried out through the anti‐reflection coating (TiO2), the passivation layer (SiO2) and up into the phosphorus‐doped silicon bulk. At the solar cell surface the elemental composition is similar for both cells, although the bad one presents slightly more carbon, phosphorus and lead but less silver than the good one. During profiling, carbon and silver could be followed by XPS. It was found that the carbon content is distinguishably higher in the bad cell than in the good one. Furthermore, it was found that silver atoms have not diffused in the same way in both cells. Only the good cell presents silver atoms up into the silicon bulk. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
15.
Error surfaces are calculated for the fitting of concentration–depth profiles to angle‐resolved x‐ray photoelectron spectroscopy (ARXPS) data. The shapes of the error surfaces indicate that model parameters related to composition (especially at the very surface of the sample) are well constrained by the data, whereas parameters related to depth have a less significant impact on the fit. It is then shown that certain parameters in the different depth profile models employed are highly correlated and that the different models convey essentially the same information in different ways. Finally, a compromise profile definition is proposed for the fitting of constrained but flexible depth profiles to ARXPS data. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
16.
Polyatomic primary ions have been applied recently to the depth profiling of organic materials by secondary ion mass spectrometry (SIMS). Polyatomic primary ions offer low penetration depth and high damage removal rates in some polymers, but the relationship between polymer chemistry and degradation under polyatomic primary ion bombardment has not been studied systematically. In this study, positive and negative ion time‐of‐flight SIMS (ToF‐SIMS) was used to measure the damage of ~100 nm thick spin‐cast poly(methyl methacrylate) (PMMA), poly(methyl acrylate) (PMA) and poly(methacrylic acid) (PMAA), films under extended (~2 × 1014 ions cm?2) 5 keV SF5+ bombardment. These polymers were compared to determine the effect of the main chain and pendant methyl groups on their degradation under SF5+ bombardment. The sputter rate of PMMA was approximately twice that of PMA or PMAA and the rate of damage accumulation was higher for PMA and PMAA than PMMA, suggesting that the main chain and pendant methyl groups played an important role in the degradation of these polymers under SF5+ bombardment. These results are consistent with the literature on the thermal and radiation‐induced degradation of these polymers, which show that removal of the main chain or pendant methyl groups reduces the rate of depolymerization and increases the rate of intra‐ or intermolecular cross‐linking. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
17.
Biomass energy is the most acknowledged renewable resource due to its universality, richness, and renewability. This study utilized a Portulaca oleracea L. plant as a natural colorant for wool fabric dyeing with a high color yield at optimum extraction and dyeing conditions. To evaluate the dyeing mechanism and feasibility of the extracted dyes, we analyzed and characterized the molecular structure and nano-level particle size. The dyeing kinetics and the morphology of dyed fabrics were integratedly explored; the adsorption process of wool fabric on natural colorant molecules was increasingly in line with the pseudo-second-order kinetic adsorption model. Further, the dyeing effects of wool fabrics were compared to that of Musa basjoo mordant and synthetic dyes to confirm the superior color depth (K/S value 23.53), biological function as anti-ultraviolet (UPF value 253.47), and anti-bacterial activity (antibacterial rate of Staphylococcus aureus/Escherichia coli was 71.3%/37%). Our findings provide a feasible scheme for providing deep color and biological activity to wool fabrics. This has broad application prospects in the field of eco-friendly textile materials.  相似文献   
18.
 For investigation of the luminescent center profile cathodoluminescence measurements are used under variation of the primary electron energy E 0 = 2…30 keV. Applying a constant incident power regime (E 0·I 0 = const), the depth profiles of luminescent centers are deduced from the range of the electron energy transfer profiles dE/dx. Thermally grown SiO2 layers of thickness d = 500 nm have been implanted by Ge+-ions of energy 350 keV and doses (0.5–5)1016 ions/cm2. Thus Ge profiles with a concentration maximum of (0.4 – 4) at% at the depth of dm≅240 nm are expected. Afterwards the layers have been partially annealed up to T a = 1100 °C for one hour in dry nitrogen. After thermal annealing, not only the typical violet luminescence (λ = 400 nm) of the Ge centers is strongly increased but also the luminescent center profiles are shifted from about 250 nm to 170 nm depth towards the surface. This process should be described by Ge diffusion processes, precipitation and finally Ge nanocluster formation. Additionally, a Ge surface layer is piled-up extending to a depth of roughly 25 nm.  相似文献   
19.
Depth profiles of Ga2O3/a-SiO2/Al2O3- substrate, Ga2O3/a-Si3N4/Al2O3- substrate, and Ga2O3/Al2O3 substrate thin layers were determined by the SNMS/HFM method. Al diffusion from the Al2O3 substrate was investigated after 50, and in some cases after 600 hours of heat treatment time at different temperatures (600 °C,850 °C,950 °C,1050 °C and 1150 °C). The diffusion coefficient of Al at 850 °C was found to be D Al=8.7 * 10–18 cm2/s in amorphous SiO2; D Al=1.5*10–17 cm2/s in amorphous Si3N4 and D Al=5.5* 10–16 cm2/s in Ga2O3 at 600 °C, respectively. The possible diffusion mechanism is explained in terms of the metal-oxygen bond-strengths. Although the studied materials have high resistivity at room temperature, the applied SNMS/HFM method has proven to be an efficient surface analytical tool even in these cases.Dedicated to Professor Dr. rer. nat. Dr. h.c. Hubertus Nickel on the occasion of his 65th birthday  相似文献   
20.
The influence of surface structure of technical materials on results and statements of surface analytical methods has been investigated. Especially surface roughness as a typical property of rolled products has been observed. For this purpose samples of steel (technical surface, roughness up to 5 m) and silicon wafers (polished surface) have been analyzed by SNMS and GDOS in order to get information about changes of the surface roughness as function of the sputtering time and their influence on the statements about the depth profiles obtained.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号