首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29594篇
  免费   3832篇
  国内免费   2251篇
化学   3538篇
晶体学   31篇
力学   3390篇
综合类   359篇
数学   19556篇
物理学   8803篇
  2024年   75篇
  2023年   344篇
  2022年   463篇
  2021年   667篇
  2020年   1143篇
  2019年   1007篇
  2018年   916篇
  2017年   818篇
  2016年   956篇
  2015年   810篇
  2014年   1338篇
  2013年   2616篇
  2012年   1400篇
  2011年   1753篇
  2010年   1689篇
  2009年   1881篇
  2008年   1964篇
  2007年   1903篇
  2006年   1645篇
  2005年   1589篇
  2004年   1361篇
  2003年   1292篇
  2002年   1117篇
  2001年   861篇
  2000年   830篇
  1999年   793篇
  1998年   733篇
  1997年   598篇
  1996年   461篇
  1995年   399篇
  1994年   324篇
  1993年   214篇
  1992年   198篇
  1991年   215篇
  1990年   186篇
  1989年   105篇
  1988年   104篇
  1987年   101篇
  1986年   99篇
  1985年   115篇
  1984年   95篇
  1983年   48篇
  1982年   89篇
  1981年   79篇
  1980年   55篇
  1979年   59篇
  1978年   37篇
  1977年   34篇
  1976年   23篇
  1973年   16篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
Knowledge of drug solubility data in supercritical carbon dioxide (SC-CO2) is a fundamental step in producing nano and microparticles through supercritical fluid technology. In this work, for the first time, the solubility of metoclopramide hydrochloride (MCP) in SC-CO2 was measured in pressure and temperature range of 12 to 27 MPa and 308 to 338 K, respectively. The results represented a range mole fractions of 0.15 × 10-5 to 5.56 × 10-5. To expand the application of the obtained data, six semi-empirical models and three models based on the Peng-Robinson equation of state (PR + VDW, PR + WS + Wilson and PR + MHV1 + COSMOSAC) with different mixing rules and various ways to describe intermolecular interactions were investigated. Furthermore, total enthalpy, sublimation enthalpy and solvation enthalpy relevant to MCP solvating in SC-CO2 were estimated.  相似文献   
982.
The synthesis of hybrid platinum materials is fundamental to enable alkaline water electrolysis for cost-effective H2 generation. In this work, we have used a galvanostatic method to co-deposit PtNi films onto polycrystalline gold. The surface concentrations of Ni (ΓNi) and Pt (ΓPt) were calculated from electrochemical measurements; the ΓPtNi ratio and electrocatalytic activity of these materials towards hydrogen evolution reaction (HER) in 1 M KOH show a strong dependence on the current density pulse applied during the electrodeposition. Analysis of the Tafel parameters hints that, on these deposits, HER proceeds through a Volmer-Heyrovsky mechanism. The galvanostatically deposited PtNi layers present a high current output per Pt gram, 3199 A gPt−1, which is significantly larger compared to other PtNi-based materials obtained by more extended and more complex synthesis methods.  相似文献   
983.
Alkaline water electrolysis despite having a variety of choices for anodic oxygen evolution reaction (OER) catalysts out of non-precious metals suffers significantly due to the poor kinetics of cathodic hydrogen evolution reaction (HER) even with the state-of-the-art Pt and equally active Ru. The Volmer-step (water dissociation (WD) coupled proton adsorption) of alkaline HER is mostly the rate-determining step (RDS) and costs most of the work required. In this review, recent developments in improving the HER kinetics of Pt and Ru with Volmer-step promotors and electronic structure modulators have been comprehensively analyzed and critically presented with the challenges and prospects.  相似文献   
984.
Herein, we report a facile method for synthesizing MoCo-layered double hydroxide (LDH) nanosheets employing Prussian blue analog (PBA) as the precursor. The introduction of Mo in Co-LDH modulates the electronic structure, increases the number of active sites and electrochemical surface area to improve the hydrogen evolution, oxygen evolution, and overall water splitting activity. As a result, PBA-derived Mo0.25Co0.75-LDH nanosheets demonstrated 10 mA cm?2 current density at only 220 mV and 115 mV overpotentials for OER and HER, respectively. The overall water splitting was attained at 1.52 V cell voltage for 10 mA cm?2 current density.  相似文献   
985.
The development of selective electrocatalysts for the chlorine evolution reaction (CER) is majorly restrained by a scaling relation between the OCl and OOH adsorbates, rendering that active CER catalysts are also reasonably active in the competing oxygen evolution reaction (OER). While theory predicts that the OCl versus OOH scaling relation can be circumvented as soon as the elementary reaction steps in the CER comprise the Cl rather than the OCl adsorbate, it was demonstrated recently that PtN4 sites embedded in a carbon nanotube follow this theoretical prediction. Advanced experimental analyses illustrate that the PtN4 sites also reveal a different reaction kinetics compared to the industrial benchmark of dimensionally stable anodes (DSA). A reverse Volmer–Heyrovsky mechanism was identified, in which the rate-determining Volmer step for small overpotentials is followed by the kinetically limiting Heyrovsky step for larger overpotentials. Since the PtN4 sites excel DSA in terms of activity and chlorine selectivity, we suggest the Cl intermediate as well as the reverse Volmer–Heyrovsky mechanism as the design criteria for the development of next-generation electrode materials beyond DSA.  相似文献   
986.
Water electrolysis is a promising method for hydrogen production, so the preparation of low-cost and efficient electrocatalysts with a quick and simple procedure is crucial. Herein, iron phosphate (Fe7(PO4)6) was prepared via microwave radiation using ionic liquid (IL) as iron and phosphorus dual-source. This method is simple and rapid, and the product can be directly used as electrocatalysts without further treatment. The experimental results show that the IL can influence the morphology and electrocatalytic performance. Moreover, the addition of carbon nanotubes (CNTs) is favorable for formation of iron phosphate nanoparticles to improve the catalytic activities. As hydrogen evolution reaction (HER) catalyst, this iron phosphate/CNTs exhibits an onset overpotential of 120 mV, Tafel slope of 32.9 mV dec-1, and current densities of 10 mA cm−2 at overpotential of 185 mV. Then, it obtains a good activity for oxygen evolution reaction (OER) with a low onset potential of 1.48 V, Tafel slope of 73.3 mV dec-1, and it only needs an overpotential of 300 mV to drive the 10 mA cm−2. This bifunctional catalyst also shows good durability for HER and OER. This microwave-assisted method provides an outstanding strategy to prepare iron phosphate in a simple and fast process with good catalytic performance for water splitting.  相似文献   
987.
To ensure sustainable hydrogen production by water electrolysis, robust, earth‐abundant, and high‐efficient electrocatalysts are required. Constructing a hybrid system could lead to further improvement in electrocatalytic activity. Interface engineering in composite catalysts is thus critical to determine the performance, and the phase‐junction interface should improve the catalytic activity. Here, we show that nickel diphosphide phase junction (c‐NiP2/m‐NiP2) is an effective electrocatalyst for hydrogen production in alkaline media. The overpotential (at 10 mA cm?2) for NiP2‐650 (c/m) in alkaline media could be significantly reduced by 26 % and 96 % compared with c‐NiP2 and m‐NiP2, respectively. The enhancement of catalytic activity should be attributed to the strong water dissociation ability and the rearrangement of electrons around the phase junction, which markedly improved the Volmer step and benefited the reduction process of adsorbed protons.  相似文献   
988.
The catalyst-free conjugate addition of pyrroles to β-Fluoro-β-nitrostyrenes was investigated. The reaction was found to proceed under solvent-free conditions to form 2-(2-Fluoro-2-nitro-1-arylethyl)-1H-pyrroles. The effectiveness of this approach was demonstrated through the preparation of a series of the target products in a quantitative yield. The kinetics of a conjugate addition of pyrrole was studied in detail to reveal the substituent effect and activation parameters of the reaction. The subsequent base-induced elimination of nitrous acid afforded a series of novel 2-(2-Fluoro-1-arylvinyl)-1H-pyrroles prepared in up to an 85% isolated yield. The two-step sequence herein proposed is an indispensable alternative to a direct reaction with elusive and unstable 1-Fluoroacetylenes.  相似文献   
989.
Molybdenum disulfide (MoS2) has been regarded as one of the most promising candidates for replacing Pt group noble metals as an efficient electrocatalyst to enhance the hydrogen evolution reaction (HER) in consideration of its relatively high earth abundance. Recent studies show that the catalytic efficiency of MoS2 for HER can be promoted by the presence of 1T-phase MoS2. It is hard to precisely control the formation of 1T-MoS2, however, due to its metastability relative to 2H-MoS2. Elevating the stability of 1T phase allotrope is therefore of great importance and could be realized by replacing divalent S with monovalent elements or groups according to crystal field theory, which has been demonstrated through our first-principles density functional theory (DFT) calculation results. Differential Gibbs free energy analysis for hydrogen adsorption (ΔGH*) suggest that 1T and 1T′ MoSO (O doped MoS2) might be taken as potential candidate catalysts for HER process with better performance than 1T and 1T′ MoS2. We also propose a probable approach to synthesize 1T and 1T′ MoSO under oxidation circumstance environment of graphene oxide.  相似文献   
990.
《中国化学快报》2021,32(9):2597-2616
Electrochemical overall water splitting is attracting a broad focus as a promising strategy for converting the electrical output of renewable resources into chemical fuels, specifically oxygen and hydrogen. However, the urgent challenge in water electrolysis is to search for low-cost, high-efficiency catalysts based on earth-abundant elements as an alternative to the high-cost but effective noble metal-based catalysts. The transition metal-based catalysts are more appealing than the noble metal catalysts because of its low cost, high performance and long stability. Some recent advances for the development in overall water splitting are reviewed in terms of transition metal-based oxides, carbides, phosphides, sulfides, and hybrids of their mixtures as hybrid bifunctional electrocatalysts. Concentrating on different catalytic mechanisms, recent advances in their structural design, controllable synthesis, mechanistic insight, and performance-enhancing strategies are proposed. The challenges and prospects for the future development of transition metal-based bifunctional electrocatalysts are also addressed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号