首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The bottleneck of alkaline hydrogen evolution reaction lies in the kinetically sluggish brought from multistep reaction processes involving water adsorption and dissociation, as well as hydrogen adsorption. In this work, we successfully synthesized o-CoSe2/c-CoSe2 heterostructures anchored on MoSe2 nanosheets to powerfully promote reaction processes. As an electrocatalyst, it exhibits a low overpotential of 112 mV at 10 mA/cm2 and a Tafel slope of 96.9 mV/dec for an alkaline hydrogen evolution reaction. Moreover, the as-prepared catalyst can behave as both cathode and anode for overall water splitting, which only requires 1.61 V cell voltage at 10 mA/cm2. Significantly, the cell voltage can be further reduced to 1.53 V at 10 mA/cm2 for water electrolysis under the simulated solar irradiation owing to such a semiconductor-based heterostructure that facilitates the separation of photogenerated charges. Here, the improving overall performance of this ternary electrocatalyst is attributed to the multifunctionality and synergistic interaction of different components in this heterogeneous material. The work provides a novel strategy to design active catalysts simultaneously using electric energy and solar energy for effective water splitting.  相似文献   

2.
Controllable tailoring of metal-free/carbon-based nanostructures tends an encouraging way to enhance the bifunctional activity of electrodes, but a great challenge owing to the sluggish kinetics of oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Herein, a facile tempted-defects assisted fractionation strategy is presented to synthesize N, S, and O tri-doped metal-free catalyst (DE-TDAP). Due to this effective tempted-defects and heteroatoms interlinking in DE-TDAP, it delivers the lowest overpotential toward both the OER (346 mV) and HER (154 mV) at 10 mA cm?2. Remarkably, the DE-TDAP-electrode carries only a cell voltage of 1.81 V at 10 mA cm?2 for overall water splitting and long-term stability. Considerably, the density functional theory (DFT) calculation exposes that the tailored-defects in tri-doped interlinking could enhance bifunctional catalytic performance devising from lower Gibbs free energy of OER/HER intermediates on active sites. This struggle henceforth provides a perceptive understanding of the synergetic principles of heteroatom-interlinking-tailoring nanostructures in water splitting.  相似文献   

3.
The development of durable, low‐cost, and efficient photo‐/electrolysis for the oxygen and hydrogen evolution reactions (OER and HER) is important to fulfill increasing energy requirements. Herein, highly efficient and active photo‐/electrochemical catalysts, that is, CoMn‐LDH@g‐C3N4 hybrids, have been synthesized successfully through a facile in situ co‐precipitation method at room temperature. The CoMn‐LDH@g‐C3N4 composite exhibits an obvious OER electrocatalytic performance with a current density of 40 mA cm?2 at an overpotential of 350 mV for water oxidation, which is 2.5 times higher than pure CoMn‐LDH nanosheets. For HER, CoMn‐LDH@g‐C3N4 (η50=?448 mV) requires a potential close to Pt/C (η50=?416 mV) to reach a current density of 50 mA cm2. Furthermore, under visible‐light irradiation, the photocurrent density of the CoMn‐LDH@g‐C3N4 composite is 0.227 mA cm?2, which is 2.1 and 3.8 time higher than pristine CoMn‐LDH (0.108 mA cm?2) and g‐C3N4 (0.061 mA cm?2), respectively. The CoMn‐LDH@g‐C3N4 composite delivers a current density of 10 mA cm?2 at 1.56 V and 100 mA cm?2 at 1.82 V for the overall water‐splitting reaction. Therefore, this work establishes the first example of pure CoMn‐LDH and CoMn‐LDH@g‐C3N4 hybrids as electrochemical and photoelectrochemical water‐splitting systems for both OER and HER, which may open a pathway to develop and explore other LDH and g‐C3N4 nanosheets as efficient catalysts for renewable energy applications.  相似文献   

4.
A core‐shell structure with CuO core and carbon quantum dots (CQDs) and carbon hollow nanospheres (CHNS) shell was prepared through facile in‐situ hydrothermal process. The composite was used for non‐enzymatic hydrogen peroxide sensing and electrochemical overall water splitting. The core‐shell structure was established from the transmission electron microscopy image analysis. Raman and UV‐Vis spectroscopy analysis confirmed the interaction between CuO and CQDs. The electrochemical studies showed the limit of detection and sensitivity of the prepared composite as 2.4 nM and 56.72 μA μM?1 cm?2, respectively. The core‐shell structure facilitated better charge transportation which in turn exhibited elevated electro‐catalysis towards hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and overall water splitting. The overpotential of 159 mV was required to achieve 10 mA cm?2 current density for HER and an overpotential of 322 mV was required to achieve 10 mA cm?2 current density for OER in 1.0 M KOH. A two‐electrode system was constructed for overall water splitting reaction, which showed 10 and 50 mA cm?2 current density at 1.83 and 1.96 V, respectively. The prepared CuO@CQDs@CHNS catalyst demonstrated excellent robustness in HER and OER catalyzing condition along with overall water splitting reaction. Therefore, the CuO@CQDs@CHNS could be considered as promising electro‐catalyst for H2O2 sensing, HER, OER and overall water splitting.  相似文献   

5.
Water electrolysis is a promising method for hydrogen production, so the preparation of low-cost and efficient electrocatalysts with a quick and simple procedure is crucial. Herein, iron phosphate (Fe7(PO4)6) was prepared via microwave radiation using ionic liquid (IL) as iron and phosphorus dual-source. This method is simple and rapid, and the product can be directly used as electrocatalysts without further treatment. The experimental results show that the IL can influence the morphology and electrocatalytic performance. Moreover, the addition of carbon nanotubes (CNTs) is favorable for formation of iron phosphate nanoparticles to improve the catalytic activities. As hydrogen evolution reaction (HER) catalyst, this iron phosphate/CNTs exhibits an onset overpotential of 120 mV, Tafel slope of 32.9 mV dec-1, and current densities of 10 mA cm−2 at overpotential of 185 mV. Then, it obtains a good activity for oxygen evolution reaction (OER) with a low onset potential of 1.48 V, Tafel slope of 73.3 mV dec-1, and it only needs an overpotential of 300 mV to drive the 10 mA cm−2. This bifunctional catalyst also shows good durability for HER and OER. This microwave-assisted method provides an outstanding strategy to prepare iron phosphate in a simple and fast process with good catalytic performance for water splitting.  相似文献   

6.
An Ru-doping strategy is reported to substantially improve both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) electrocatalytic activity of Ni/Fe-based metal–organic framework (MOF) for overall water splitting. As-synthesized Ru-doped Ni/Fe MIL-53 MOF nanosheets grown on nickel foam (MIL-53(Ru-NiFe)@NF) afford HER and OER current density of 50 mA cm−2 at an overpotential of 62 and 210 mV, respectively, in alkaline solution with a nominal Ru loading of ≈110 μg cm−2. When using as both anodic and cathodic (pre-)catalyst, MIL-53(Ru-NiFe)@NF enables overall water splitting at a current density of 50 mA cm−2 for a cell voltage of 1.6 V without iR compensation, which is much superior to state-of-the-art RuO2-Pt/C-based electrolyzer. It is discovered that the Ru-doping considerably modulates the growth of MOF to form thin nanosheets, and enhances the intrinsic HER electrocatalytic activity by accelerating the sluggish Volmer step and improving the intermediate oxygen adsorption for increased OER catalytic activity.  相似文献   

7.
Active, stable, and earth-abundant bifunctional electrocatalyst for overall water splitting is pivotal to actualize large-scale water splitting via electrolysis. In this work, the hierarchical folded nanosheet-like Co0.85Se array on Ni foam is constructed by liquid-phase chemical conversion with cobalt precursor nanorod array. It can serve as an efficient bifunctional electrocatalyst for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in alkaline electrolyte, with a current density of 10 mA cm?2 at overpotential of 232 mV for OER and 129 mV for HER and Tafel slope of 78.9 mV dec?1 for OER and 95.0 mV dec?1 for HER, respectively. The two-electrode alkaline water electrolyzer utilizing this folded nanosheet-like Co0.85Se array as both anode and cathode toward overall water splitting offered a current of 10 mA cm?2 at a cell voltage of 1.60 V. This work explores an efficient and low-cost electrocatalyst for overall water splitting application in alkaline electrolytes.  相似文献   

8.
A facile one-pot hydrothermal method has been demonstrated for the fabrication of an innovative hydrangea-like NiSe/FeSe2 nanocatalyst for boosting oxygen evolution reaction (OER). Benefitting from the advantages of the porous architecture, high specific surface area, facilitated electron transfer rate, an ultralow overpotential of merely 210 mV is required for the optimized NiSe/FeSe2(1:1.5) to drive the electrocatalytic water oxidation to reach to 10 mA cm?2. Moreover, by equipping NiSe/FeSe2(1:1.5) with Pt/C for electrochemical water splitting, a cell potential of merely 1.60 V is demanded to attain 10 mA cm?2, even outperforming the IrO2 6 Pt/C couple. More importantly, the structure and morphology of NiSe/FeSe2(1:1.5) are still well maintained after a long-term chronopotentiometry test. This work opens a new avenue for constructing effective and durable non-precious electrocatalysts for OER.  相似文献   

9.
The development of inexpensive and efficient bifunctional electrocatalysts is significant for widespread practical applications of overall water splitting technology. Herein, a one-pot solvothermal method is used to prepare hollow porous MnFe2O4 spheres, which are grown on natural-abundant elm-money-derived biochar material to construct MnFe2O4/BC composite. When the overpotential is 156 mV for both the oxygen evolution reaction and the hydrogen evolution reaction, the current density reaches up to 10 mA cm−2, and its duration is 10 h. At 1.51 V, the overall water decomposition current density of 10 mA cm−2 can be obtained in 1 m KOH. This work proves that elm-money-derived biochar is a valid substrate for growing hollow porous spheres. MnFe2O4/BC give a promising general strategy for preparing the effective and stable bifunctional catalysis that can be expand to multiple transition metal oxide.  相似文献   

10.
Water electrolysis is a promising source of hydrogen; however, technological challenges remain. Intensive efforts have focused on developing highly efficient and earth‐abundant electrocatalysts for water splitting. An effective strategy is proposed, using a bifunctional tubular cobalt perselenide nanosheet electrode, in which the sluggish oxygen evolution reaction is substituted with anodic hydrazine oxidation so as to assist energy‐efficient hydrogen production. Specifically, this electrode produces a current density of 10 mA cm?2 at ?84 mV for hydrogen evolution and ?17 mV for hydrazine oxidation in 1.0 m KOH and 0.5 m hydrazine electrolyte. An ultralow cell voltage of only 164 mV is required to generate a current density of 10 mA cm?2 for 14 hours of stable water electrolysis.  相似文献   

11.
Hydrogen energy is considered as one of the ideal clean energies for solving the energy shortage and environmental issues, and developing highly efficient electrocatalysts for overall water splitting to produce hydrogen is still a huge challenge. Herein, for the first time, Ru-doped Cu2+1O vertically arranged nanotube arrays in situ grown on Cu foam (Ru/Cu2+1O NT/CuF) are reported and further investigated for their catalytic properties for overall water splitting. The Ru/Cu2+1O NT/CuF presents ultrahigh catalytic activities for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline conditions, and it exhibits a small overpotential of 32 mV at 10 mA cm−2 in the HER, and only needs 210 mV overpotential to achieve a current density of 10 mA cm−2 in the OER. Importantly, the alkaline electrolyzer using Ru/Cu2+1O NT/CuF as a bifunctional electrocatalyst only needs 1.53 V voltage to deliver a current density of 10 mA cm−2, which is much lower than the benchmark of IrO2(+)/Pt(−) counterpart (1.64 V at 10 mA cm−2). The excellent performance of the Ru/Cu2+1O NT/CuF catalyst is attributed to its high conductive substrate and special Ru-doped nanotube structure, which provides a high electrochemical active surface area and 3D gas diffusion channel.  相似文献   

12.
《中国化学快报》2022,33(11):4930-4935
Exploring efficient oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) electrocatalysts is crucial for developing water splitting devices. The composition and structure of catalysts are of great importance for catalytic performance. In this work, a heterogeneous Ru modified strategy is engineered to improve the catalytic performance of porous NiCo2O4 nanosheets (NSs). Profiting from favorable elements composition and optimized structure property of decreased charge transfer barrier, more accessible active sites and increased oxygen vacancy concentration, the Ru-NiCo2O4 NSs exhibits excellent OER activity with a low overpotential of 230 mV to reach the current density of 10 mA/cm2 and decent durability. Furthermore, Ru-NiCo2O4 NSs show superior HER activity than the pristine NiCo2O4 NSs, as well. When assembling Ru-NiCo2O4 NSs couple as an alkaline water electrolyzer, a cell voltage of 1.60 V can deliver the current density of 10 mA/cm2. This work provides feasible guidance for improving the catalytic performance of spinel-based oxides.  相似文献   

13.
It is still an enormous challenge to develop non-precious electrocatalysts through low-cost and efficient methods. To fulfill highly active site exposure and optimized intrinsic activity, the 2-dimensional NiS2/CeO2 with unique heterostructure and abundant sulfur and oxygen vacancies (v-NiS2/CeO2 HS) was prepared by solvothermal reaction and annealing. The density functional theory calculations illustrate that the materials with both heterostructure and vacancies simultaneously have a positive effect on promoting the kinetics of oxygen evolution reaction and hydrogen evolution reaction and optimizing the adsorption energy of hydrogen. As a result, v-NiS2/CeO2 HSs deliver the current density of 10 mA/cm2 at the low overpotential of 271 mV for oxygen evolution reaction and the overpotential required by v-NiS2/CeO2 HSs for hydrogen evolution reaction is 123 mV (at 10 mA/cm2). The v-NiS2/CeO2 HSs demand a lower cell voltage with 1.64 V (at 10 mA/cm2) toward overall water splitting. These results provide a theoretical and practical direction for the development of low-cost, earth-abundant electrocatalysts.  相似文献   

14.
Electrochemical water splitting to generate molecular hydrogen requires catalysts that are cheap, active, and stable, particularly for alkaline electrolyzers, where the cathodic hydrogen evolution reaction is slower in base than in acid even on platinum. Herein, we describe the synthesis of new hollow Chevrel‐phase NiMo3S4 and its alkaline hydrogen evolution reaction (HER) performance: onset potential of ?59 mV, Tafel slope of 98 mV per decade, and exchange current density of 3.9×10?2 mA cm?2. This Chevrel‐phase chalcogenide also demonstrates outstanding long‐term stability under harsh HER cycling conditions. Chevrel‐phase nanomaterials show promise as efficient, low‐cost catalysts for alkaline electrolyzers.  相似文献   

15.
《化学:亚洲杂志》2017,12(22):2956-2961
Developing efficient non‐noble metal and earth‐abundant electrocatalysts with tunable microstructures for overall water splitting is critical to promote clean energy technologies for a hydrogen economy. Herein, novel three‐dimensional (3D) flower‐like Ni2P composed of mesoporous nanoplates with controllable morphology and high surface area was prepared by a hydrothermal method and low‐temperature phosphidation as efficient electrocatalysts for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Compared with the urchin‐like Nix Py , the 3D flower‐like Ni2P with a diameter of 5 μm presented an efficient and stable catalytic performance in 0.5 m H2SO4, with a small Tafel slope of 79 mV dec−1 and an overpotential of about 240 mV at a current density of 10 mA cm−2 with a mass loading density of 0.283 mg cm−2. In addition, the catalyst also exhibited a remarkable performance for the OER in 1.0 m KOH electrolyte, with an overpotential of 320 mV to reach a current density of 10 mA cm−2 and a small Tafel slope of 72 mV dec−1. The excellent catalytic performance of the as‐prepared Ni2P may be ascribed to its novel 3D morphology with unique mesoporous structure.  相似文献   

16.
Metal–organic frameworks (MOFs) and MOF‐derived nanomaterials have recently attracted great interest as highly efficient, non‐noble‐metal catalysts. In particular, two‐dimensional MOF nanosheet materials possess the advantages of both 2D layered nanomaterials and MOFs and are considered to be promising nanomaterials. Herein, we report a facile and scalable in situ hydrothermal synthesis of Co–hypoxanthine (HPA) MOF nanosheets, which were then directly carbonized to prepare uniform Co@N‐Carbon nanosheets for efficient bifunctional electrocatalytic hydrogen‐evolution reactions (HERs) and oxygen‐evolution reactions (OERs). The Co embedded in N‐doped carbon shows excellent and stable catalytic performance for bifunctional electrocatalytic OERs and HERs. For OERs, the overpotential of Co@N‐Carbon at 10 mA cm?2 was 400 mV (vs. reversible hydrogen electrode, RHE). The current density of Co@N‐Carbon reached 100 mA cm?2 at an overpotential of 560 mV, which showed much better performance than RuO2; the largest current density of RuO2 that could be reached was only 44 mA cm?2. The Tafel slope of Co@N‐Carbon was 61 mV dec?1, which is comparable to that of commercial RuO2 (58 mV dec?1). The excellent electrocatalytic properties can be attributed to the nanosheet structure and well‐dispersed carbon‐encapsulated Co, CoN nanoparticles, and N‐dopant sites, which provided high conductivity and a large number of accessible active sites. The results highlight the great potential of utilizing MOF nanosheet materials as promising templates for the preparation of 2D Co@N‐Carbon materials for electrocatalysis and will pave the way to the development of more efficient 2D nanomaterials for various catalytic applications.  相似文献   

17.
《中国化学快报》2020,31(10):2641-2644
The high cost and low reserves of noble metals greatly hinder their practical applications in new energy production and conversion. The exploration of cost-effective alternative electrocatalysts with the ability to drive hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is extremely significant to promote overall water splitting. Herein, ultrathin CoSe2/CNTs nanocomposites have been synthesized by a facile two-step method, where the ultrathin Co-MOF (metal organic-framework) decorated with cable-like carbon nanotubes (CNTs) (Co-MOF/CNTs) was initially fabricated, and followed a low-temperature selenization process. The ultrathin CoSe2 nanosheets as well as the superior conductivity of CNTs synergistically resulted in abundant active sites and enhanced conductivity to boost the electrocatalytic activity. The as-prepared CoSe2/CNTs electrocatalysts exhibited an overpotential of 190 mV and 300 mV vs. reversible hydrogen electrode (RHE) at a current density of 10 mA/cm2 for the HER and OER in alkaline solution, respectively, and demonstrated superior durability. Furthermore, the as-prepared bifunctional CoSe2/CNTs electrocatalysts can act as cathode and anode in an electrolyzer, showing a cell voltage of 1.75 V at 10 mA/cm2 for overall water splitting.  相似文献   

18.
Developing highly active, stable and robust electrocatalysts based on earth‐abundant elements for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is important for many renewable energy conversion processes. Herein, NixCo3‐xO4 nanoneedle arrays grown on 3D porous nickel foam (NF) was synthesized as a bifunctional electrocatalyst with OER and HER activity for full water splitting. Benefiting from the advantageous structure, the composite exhibits superior OER activity with an overpotential of 320 mV achieving the current density of 10 mA cm?2. An exceptional HER activity is also acquired with an overpotential of 170 mV at the current density of 10 mA cm?2. Furthermore, the catalyst also shows the superior activity and stability for 20 h when used in the overall water splitting cell. Thus, the hierarchical 3D structure composed of the 1D nanoneedle structure in NixCo3‐xO4/NF represents an avenue to design and develop highly active and bifunctional electrocatalysts for promising energy conversion.  相似文献   

19.
利用CoFe层状双金属氢氧化物(CoFe LDH)准平行纳米片阵列作为载体前驱体,通过原位负载及煅烧方式,实现了含有氧空位的 MoO2纳米颗粒在纳米片阵列表面的生长。电化学研究结果表明,所得 CoFeOx/MoO2纳米阵列电极具有高析氢反应(HER)催化活性。该电极在10和1 000 mA·cm-2时的HER过电位分别为40和217 mV。在50 mA·cm-2的电流密度下,该电极可以稳定运行125 h。  相似文献   

20.
One of the challenges to realize large‐scale water splitting is the lack of active and low‐cost electrocatalysts for its two half reactions: H2 and O2 evolution reactions (HER and OER). Herein, we report that cobalt‐phosphorous‐derived films (Co‐P) can act as bifunctional catalysts for overall water splitting. The as‐prepared Co‐P films exhibited remarkable catalytic performance for both HER and OER in alkaline media, with a current density of 10 mA cm?2 at overpotentials of ?94 mV for HER and 345 mV for OER and Tafel slopes of 42 and 47 mV/dec, respectively. They can be employed as catalysts on both anode and cathode for overall water splitting with 100 % Faradaic efficiency, rivalling the integrated performance of Pt and IrO2. The major composition of the as‐prepared and post‐HER films are metallic cobalt and cobalt phosphide, which partially evolved to cobalt oxide during OER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号