首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6038篇
  免费   307篇
  国内免费   179篇
化学   859篇
晶体学   12篇
力学   3246篇
综合类   31篇
数学   351篇
物理学   2025篇
  2023年   18篇
  2022年   31篇
  2021年   56篇
  2020年   71篇
  2019年   85篇
  2018年   55篇
  2017年   86篇
  2016年   234篇
  2015年   232篇
  2014年   168篇
  2013年   248篇
  2012年   208篇
  2011年   329篇
  2010年   212篇
  2009年   356篇
  2008年   369篇
  2007年   399篇
  2006年   384篇
  2005年   385篇
  2004年   358篇
  2003年   352篇
  2002年   262篇
  2001年   161篇
  2000年   181篇
  1999年   134篇
  1998年   191篇
  1997年   125篇
  1996年   86篇
  1995年   129篇
  1994年   94篇
  1993年   88篇
  1992年   62篇
  1991年   46篇
  1990年   34篇
  1989年   49篇
  1988年   34篇
  1987年   30篇
  1986年   20篇
  1985年   13篇
  1984年   14篇
  1983年   6篇
  1982年   13篇
  1981年   10篇
  1979年   19篇
  1978年   8篇
  1977年   12篇
  1976年   9篇
  1973年   10篇
  1972年   8篇
  1971年   13篇
排序方式: 共有6524条查询结果,搜索用时 15 毫秒
141.
The Shallow–Water Equations (SWEs), also referred to as the de Saint-Venant equations, constitute the current governing mathematical tool for free-surface water flows. These include, e.g., flood flows in rivers and in urban zones, flows across hydraulic structures as dams or wastewater facilities, flows in the environmental fields, glaciology, or meteorology. Despite this attractiveness, the system of two partial differential equations has an exact mathematical solution only for a limited number of problems of practical relevance.This historical work on the SWEs is based on a correspondence between two 19th-century scientists, de Saint-Venant and Boussinesq. Their well-known papers are thus commented from the point of development of their theory; the input of both scientists is evidenced by their writings, and comments of both to each other that led to what is commonly known as the SWEs. Given the age difference of the two of 45 years, the experienced engineer de Saint-Venant, and the mathematician Boussinesq, two eminent researchers, met to discuss not only problems in hydraulics, but in physics generally. In addition, their correspondence embraced also questions in ethics, religion, history of sciences, and personal news.The results of the SWEs cease to hold if streamline curvature effects dominate; this includes breaking waves, solitary and cnoidal waves, or non-linear waves in general. In most other cases, however, the SWEs perfectly apply to typical flows in engineering practice; they are considered the fundamental system of equations describing open channel flows. This work thus provides a background to its birth, including lots of comments as to its improvement, physical meanings, methods of solution, and a discussion of the results. This paper also deals with the steady flow equations, gives a short account on the main persons mentioned in the Correspondence, and provides a summary of further developments of the SWEs until 1920.  相似文献   
142.
In the N-body ring problem, we investigate the motion of a massless body interacting with N bodies of equal masses at the vertices of a regular polygon that rotates around a central mass. In this paper, we analyze the use of different surfaces of section in the numerical exploration of the escape in the N-body ring problem in order to get some conclusions about the geometry of the basins of escape in the corresponding configuration spaces.  相似文献   
143.
We revisit the derivation of the microscopic stress, linking the statistical mechanics of particle systems and continuum mechanics. The starting point in our geometric derivation is the Doyle–Ericksen formula, which states that the Cauchy stress tensor is the derivative of the free-energy with respect to the ambient metric tensor and which follows from a covariance argument. Thus, our approach to define the microscopic stress tensor does not rely on the statement of balance of linear momentum as in the classical Irving–Kirkwood–Noll approach. Nevertheless, the resulting stress tensor satisfies balance of linear and angular momentum. Furthermore, our approach removes the ambiguity in the definition of the microscopic stress in the presence of multibody interactions by naturally suggesting a canonical and physically motivated force decomposition into pairwise terms, a key ingredient in this theory. As a result, our approach provides objective expressions to compute a microscopic stress for a system in equilibrium and for force-fields expanded into multibody interactions of arbitrarily high order. We illustrate the proposed methodology with molecular dynamics simulations of a fibrous protein using a force-field involving up to 5-body interactions.  相似文献   
144.
通过受限空间油气爆燃可视化实验发现,在不同初始油气体积分数下,爆燃火焰呈现出不同的表观特征,据此提出了受限空间油气爆燃的3种火焰形态,即光滑球形火焰、褶皱球形火焰和卷曲絮状火焰。分析了3种火焰形态的形成机理,并通过实验观测与理论分析,给出了区分3种火焰形态的临界条件。结合实验中采集到的关键参数,总结了不同的火焰形态下受限空间油气爆燃的反应产物、最大压力、升压速率、反应时间、火焰强度等关键参数的特征与变化规律。  相似文献   
145.
We followed the self-assembly of high-molecular weight MePEG- b -PCL (poly(methyl ethylene glycol)-block-poly(ε-caprolactone)) diblock and MePEG- b -PBO- b -PCL (poly(methyl ethylene glycol)-block-poly(1,2-butylene oxide)-block-poly(ε-caprolactone)) into micelles using molecular dynamics simulation with a coarse grain (CG) force field based on quantum mechanics (CGq FF). The triblock polymer included a short poly(1,2-butylene oxide) (PBO) at the hydrophilic-hydrophobic interface of these systems. Keeping the hydrophilic length fixed (MePEG45), we considered 250 chains in which the hydrophobic length changed from PCL44 or PBO6- b -PCL43 to PCL62 or PBO9- b -PCL61. The polymers were solvated in explicit water for 2 μs of simulations at 310.15 K. We found that the longer diblock system undergoes a morphological transition from an intermediate rod-like micelle to a prolate-sphere, while the micelle formed from the longer triblock system is a stable rod-like micelle. The two shorter diblock and triblock systems show similar self-assembly processes, both resulting in slightly prolate-spheres. The dynamics of the self-assembly is quantified in terms of chain radius of gyration, shape anisotropy, and hydration of the micelle cores. The final micelle structures are analyzed in terms of the local density components. We conclude that the CG model accurately describes the molecular mechanisms of self-assembly and the equilibrium micellar structures of hydrophilic and hydrophobic chains, including the quantity of solvent trapped inside the micellar core.  相似文献   
146.
We consider the Griffith fracture model in two spatial dimensions, and prove existence of strong minimizers, with closed jump set and continuously differentiable deformation fields. One key ingredient, which is the object of the present paper, is a generalization to the vectorial situation of the decay estimate by De Giorgi, Carriero, and Leaci. This is based on replacing the coarea formula by a method to approximate SBDp functions with small jump set by Sobolev functions, and is restricted to two dimensions. The other two ingredients will appear in companion papers and consist respectively in regularity results for vectorial elliptic problems of the elasticity type and in a method to approximate in energy GSBDp functions by SBVp ones.  相似文献   
147.
Abstract

The conformational behaviour of a series of ring substituted (ortho-Cl, F and meta or para OH) Pt(II) complexes of general formula [(1,2-hydroxyphenyl)ethylenediamine]PtL2 [L ? Cl, 1] has been studied by molecular mechanics (MM) methods. Preferred orientations of the phenyl rings, which are important for the complexes′ biological activity, were obtained by calculations of rotational energies about Csp3?Car bonds for all theoretically possible isomers and conformers, meso-λ (R,S/S,R-λ), meso-δ (R,S/S,R-δ), d,l-δ (S,S/R,R-λ) and d,l-λ (S,S/R, R-δ). The influence of the ring substituents and the conformation type on the positions of the energy minima and barriers to rotations about Csp3?Car and Car-O(H) bonds were investigated in detail. Theoretical predictions were compared with the experimental results where appropriate.  相似文献   
148.
In this work, the sliding contact of viscoelastic layers of finite thickness on rigid sinusoidal substrates is investigated within the framework of Green's functions approach. The periodic Green's functions are determined by means of a novel formalism, which can be applied, in general, to either 2D and 3D viscoelastic periodic contacts, regardless of the contact geometry and boundary conditions.Specifically, two different configurations are considered here: a free layer with a uniform pressure applied on the top, and a layer rigidly confined on the upper boundary. It is shown that the thickness affects the contact behavior differently, depending on the boundary conditions. In particular, the confined layer exhibits increasing contact stiffness when the thickness is reduced, leading to higher loads for complete contact to occur. The free layer, instead, becomes more and more compliant as thickness is reduced.We find that, in partial contact, the layer thickness and the boundary conditions significantly affect the frictional behavior. In fact, at low contact penetrations, the confined layer shows higher friction coefficients compared to the free layer case; whereas, the scenario is reversed at large contact penetrations. Furthermore, for confined layers, the sliding speed related to the friction coefficient peak is shifted as the contact penetration increases. However, once full contact is established, the friction coefficient shows a unique behavior regardless of the layer thickness and boundary conditions.  相似文献   
149.
This paper investigates the novel development of a mass sensitive nanosensor based on the use of individual spherical fullerenes. The main advantage of the mass sensing ability of spherical fullerenes in comparison with other nanomaterials such as carbon nanotubes (CNTs) or graphene nanoribbons (GNRs) is the fact that they present almost perfect geometric symmetry and thus a unique vibrational behavior which is independent from the location of the externally added nanoparticle. The study is conducted by the use of a computationally effective numerical scheme based on the adoption of appropriate three dimensional line spring elements as well as point mass elements to simulate the atomistic structure of fullerenes and interatomic interactions appearing between carbon atoms. The free vibration of C20, C60, C80 and C180 molecules is analyzed without and with an external nanoparticle of specific mass attached on their structure to calculate the arisen change in their natural frequencies and corresponding shape modes. A parametric study concerning the magnitude and location of the added mass is performed in order to evaluate the mass sensing ability of the fullerenes under consideration.  相似文献   
150.
Extensive prior literature (not referenced in the paper) on links between mechanical gyrostats and nonlinear dynamical systems with strange attractors is called to the readers’ attention.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号