首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14947篇
  免费   2268篇
  国内免费   3647篇
化学   17000篇
晶体学   170篇
力学   462篇
综合类   104篇
数学   259篇
物理学   2867篇
  2024年   52篇
  2023年   235篇
  2022年   480篇
  2021年   687篇
  2020年   920篇
  2019年   670篇
  2018年   586篇
  2017年   675篇
  2016年   857篇
  2015年   796篇
  2014年   894篇
  2013年   1511篇
  2012年   1165篇
  2011年   1064篇
  2010年   921篇
  2009年   1019篇
  2008年   1139篇
  2007年   947篇
  2006年   885篇
  2005年   811篇
  2004年   758篇
  2003年   623篇
  2002年   462篇
  2001年   401篇
  2000年   351篇
  1999年   298篇
  1998年   276篇
  1997年   231篇
  1996年   212篇
  1995年   202篇
  1994年   166篇
  1993年   170篇
  1992年   89篇
  1991年   63篇
  1990年   50篇
  1989年   37篇
  1988年   31篇
  1987年   30篇
  1986年   18篇
  1985年   13篇
  1984年   15篇
  1983年   10篇
  1982年   10篇
  1981年   9篇
  1980年   6篇
  1979年   8篇
  1977年   1篇
  1976年   4篇
  1972年   1篇
  1971年   2篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
11.
《Current Applied Physics》2020,20(3):456-461
Carbon-based electrocatalysts for oxygen reduction reaction (ORR), especially in anion exchange membrane fuel cells (AEMFCs), have received a lot of attention because they exhibit excellent stability and are comparable to commercial Pt/C catalysts. Currently, to maximize the catalytic activity of carbon-based electrocatalysts, there are two major strategies: heteroatom doping or exposing active edge sites. However, the approach of increasing heteroatomic dopants of active edge sites has been rarely addressed. In this study, we present a simple strategy to prepare edge-enriched graphene catalysts with an increased ratio of heteroatomic dopants suitable for ORR of AEMFCs. The catalysts were prepared under harsh oxidation conditions, followed by a simple co-doping process with boron and nitrogen. The ORR activity of the catalysts was observed to be related to an increase of edge sites with heteroatomic dopants. We believe that the edge-enriched structure leads to accelerated electron transfer with enhanced oxygen adsorption.  相似文献   
12.
The development of high‐surface‐area carbon electrodes with a defined pore size distribution and the incorporation of pseudo‐active materials to optimize the overall capacitance and conductivity without destroying the stability are at present important research areas. Composite electrodes of carbon nano‐onions (CNOs) and polypyrrole (Ppy) were fabricated to improve the specific capacitance of a supercapacitor. The carbon nanostructures were uniformly coated with Ppy by chemical polymerization or by electrochemical potentiostatic deposition to form homogenous composites or bilayers. The materials were characterized by transmission‐ and scanning electron microscopy, differential thermogravimetric analyses, FTIR spectroscopy, piezoelectric microgravimetry, and cyclic voltammetry. The composites show higher mechanical and electrochemical stabilities, with high specific capacitances of up to about 800 F g?1 for the CNOs/SDS/Ppy composites (chemical synthesis) and about 1300 F g?1 for the CNOs/Ppy bilayer (electrochemical deposition).  相似文献   
13.
ABSTRACT

Nano-polycrystalline diamond (NPD) with various grain sizes has been synthesized from glassy carbon at pressures 15–25?GPa and temperatures 1700–2300°C using multianvil apparatus. The minimum temperature for the synthesis of pure NPD, below which a small amount of compressed graphite was formed, significantly increased with pressure from ~1700°C at 15?GPa to ~1900°C at 25?GPa. The NPD having grain sizes less than ~50?nm was synthesized at temperatures below ~2000°C at 15?GPa and ~2300°C at 25?GPa, above which significant grain growth was observed. The grain size of NPD decreases with increasing pressure and decreasing temperature, and the pure NPD with grain sizes less than 10?nm is obtained in a limited temperature range around 1800–2000°C, depending on pressure. The pure NPD from glassy carbon is highly transparent and exhibits a granular nano-texture, whose grain size is tunable by selecting adequate pressure and temperature conditions.  相似文献   
14.
The dinuclear zinc complex reported by us is to date the most active zinc catalyst for the co‐polymerization of cyclohexene oxide (CHO) and carbon dioxide. However, co‐polymerization experiments with propylene oxide (PO) and CO2 revealed surprisingly low conversions. Within this work, we focused on clarification of this behavior through experimental results and quantum chemical studies. The combination of both results indicated the formation of an energetically highly stable intermediate in the presence of propylene oxide and carbon dioxide. A similar species in the case of cyclohexene oxide/CO2 co‐polymerization was not stable enough to deactivate the catalyst due to steric repulsion.  相似文献   
15.
16.
The design and exploration of efficient, stable and environmentally compatible organic emitters for an electrochemiluminescence (ECL) sensor is a promising topic. Herein, a novel environmentally-friendly luminophore, ZnBCBTP@MWCNTs, were fabricated via self-assembly of porphyrin molecules (ZnBCBTP) onto multi-walled carbon nanotubes (MWCNTs). The resulting luminophore ZnBCBTP@MWCNTs displayed not only the highly ECL property and but also the good accelerated electron mobility. Then, a label-free ECL biosensor based ZnBCBTP@MWCNTs was constructed for the ultrasensitive detection of uric acid. Excitingly, this proposed ECL biosensor performed a good linear relationship in the range of 0–300 μM with a low detection limit of 1.4 μM, thus offering another reliable and feasible sensing platform for clinical bioanalysis with good selectivity, stability, and repeatability.  相似文献   
17.
In this study, multiwalled carbon nanotube (MWCNT) was modified by the pyridine group using a silane agent and characterized by infrared spectroscopy (IR), thermal analysis (TG/DTA), and elemental analysis (CHN) and scanning electron microscopy (SEM). The application of this sorbent was investigated in determination of lead ions in aqueous samples, using flame atomic absorption spectrometry (FAAS). Through this study, different parameters such as pH and sample flow rate on adsorption process and eluent concentration, volume and flow rate were optimized. The limit of detection (LOD), the relative standard deviation and the recovery of the method were 2 ng mL?1, 1.3% and 99.7%, respectively. Two standard reference materials (NIST 1571 and NIST 1572) were used to verify accuracy of this method. Finally, the sorbent was successfully applied for extraction and determination of low levels of Pb(II) ions in aqueous samples.  相似文献   
18.
Excessive consumption of substances such as food colorants, exposure to doses of metal ions, antibiotic residues and pesticides residues above maximum tolerance limit have a detrimental effect on human health. Hence in detecting these harmful substances, the development of sensitive, selective and convenient analytical tools is an essential step. Graphene and graphene like 2D graphitic carbon nitride have shown great promise in the development of electrochemical sensors for determining the levels of these substances in different samples. In this paper, graphene and graphene like 2D graphitic carbon nitride applications on the determination of various food colorants in foods and drinks such as azo dyes (tartrazine, allura red, amaranth, carmine and sunset yellow); metal ions contaminants, antibiotic and pesticide residues in the environment are reviewed.  相似文献   
19.
Partially fluorinated poly(arylene ether sulfone) multiblock copolymers bearing perfluorosulfonic functions (ps‐PES‐FPES), with ionic exchange capacity (IEC) ranging between 0.9 and 1.5 meq H+/g, are synthesized by regioselective bromination of partially fluorinated poly(arylene ether sulfone) multiblock copolymers (PES‐FPES), followed by Ullman coupling reaction with lithium 1,1,2,2‐tetrafluoro‐2‐(1,1,2,2‐tetrafluoro‐2‐iodoethoxy)ethanesulfonate. The PES‐FPES are prepared by aromatic nucleophilic substitution reaction by an original approach, that is, “one pot two reactions synthesis.” The chemical structures of polymers are analyzed by 1H and 19F NMR spectroscopy. The resulted ionomers present two distinct glass transitions and α relaxations revealing phase separation between the hydrophilic and the hydrophobic domains. The phase separation is observed at much lower block lengths of ps‐PES‐FPES as compared with the literature. AFM and SANS observations supported the phase separation, the hydrophilic domains are well dispersed but the connectivity to each other depends on the ps‐PES block lengths. The thermomechanical behavior, the water up‐take, and the conductivity of the ps‐PES‐FPES membranes are compared with those of Nafion 117® and randomly functionalized polysulfone (ps‐PES). Conductivities close or higher to those of Nafion 117® are obtained. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1941–1956  相似文献   
20.
Parkinson's disease is a neurodegenerative disorder involving a functional protein, α-synuclein, whose primary function is related to vesicle trafficking. However, α-synuclein is prone to form aggregates, and these inclusions, known as Lewy bodies, are the hallmark of Parkinson's disease. α-synuclein can alter its conformation and acquire aggregating capacity, forming aggregates containing β-sheets. This protein's pathogenic importance is based on its ability to form oligomers that impair synaptic transmission and neuronal function by increasing membrane permeability and altering homeostasis, generating a deleterious effect over cells. First, we establish that oligomers interfere with the mechanical properties of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) membrane, as demonstrated by nanoindentation curves. In contrast, nanoindentation revealed that the α-synuclein monomer's presence leads to a much more resistant lipid bilayer. Moreover, the oligomers’ interaction with cell membranes can promote lactate dehydrogenase (LDH) release, suggesting the activation of cytotoxic events.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号