首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1884篇
  免费   43篇
  国内免费   248篇
化学   952篇
晶体学   10篇
力学   450篇
数学   197篇
物理学   566篇
  2024年   3篇
  2023年   78篇
  2022年   50篇
  2021年   62篇
  2020年   66篇
  2019年   48篇
  2018年   38篇
  2017年   69篇
  2016年   57篇
  2015年   36篇
  2014年   73篇
  2013年   84篇
  2012年   79篇
  2011年   172篇
  2010年   112篇
  2009年   170篇
  2008年   150篇
  2007年   171篇
  2006年   98篇
  2005年   69篇
  2004年   51篇
  2003年   62篇
  2002年   54篇
  2001年   43篇
  2000年   37篇
  1999年   26篇
  1998年   52篇
  1997年   25篇
  1996年   21篇
  1995年   19篇
  1994年   19篇
  1993年   16篇
  1992年   14篇
  1991年   5篇
  1990年   6篇
  1989年   1篇
  1988年   14篇
  1987年   11篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1979年   1篇
  1978年   2篇
  1975年   1篇
排序方式: 共有2175条查询结果,搜索用时 15 毫秒
71.
Quercus mongolica leaf (QL), an easily available biomass, was used as the precursor for preparing the hierarchical porous carbon with a large specific surface area and high adsorption capacities toward the representative dye and antibiotic. After being carbonized, QL was further chemically activated, and potassium hydroxide was proved to be a better activator than sodium hydroxide. The QL-derived porous carbon (PCQL) exhibited abundant micro- and mesopores, and the specific surface area reached 3275 m2 g?1. The performances of PCQL were evaluated through adsorbing rhodamine B (RhB) and tetracycline hydrochloride (TC) from water. Four adsorption isotherm models (the Langmuir, Freundlich, Sips, and Redlich-Peterson models), three adsorption kinetic models (the pseudo-first-order, pseudo-second-order, and intra-particle diffusion models), and the thermodynamic equations were used to investigate the adsorption processes. The pseudo-second-order kinetic model and the Sips isotherm model fitted the experimental data well, which indicates that the adsorption processes were controlled by the amount of adsorption active sites on the surface of PCQL, and these adsorption active sites had different affinities for the adsorbates. The maximum adsorption capacities of PCQL toward RhB and TC were 1946.0 and 1479.6 mg g?1, respectively, based on the Sips model. The thermodynamic analysis indicates that the adsorption of PCQL toward adsorbents was spontaneous physical processes accompanied by the increasing disorder degree. The adsorption mechanism was attributed to the combination of the pore-filling, hydrogen bond, and π-π interactions. Moreover, in the fixed-bed experiments, the Yoon-Nelson model fitted the breakthrough curves well, and about 8 L wastewater containing RhB (200 mg L?1) may be effectively treated by 1.0 g of PCQL. Above results indicate that QL is a promising precursor for preparing functional porous carbon materials.  相似文献   
72.
A composite adsorbent, chitosan//poly (ε-caprolactone)-block poly (ethylene glycol)/SiO2 aerogel@polydopamine (CS/PCL-b-PEG/SA@PDA) membrane was prepared for the adsorption of organic dyes. The matrix polymer materials of this novel adsorbent were eco-friendly. SiO2 aerogel with nanoporous network construction was fixed in the multicomponent polymer fibers through simultaneous electrospinning-electrospray technology followed by modification of polydopamine (PDA). The composite adsorbent had a maximum adsorption capacity of 598.8 mg/g for Congo red (CR) and possessed good reusability performance. This adsorbent showed excellent performance for the selective adsorption of relatively large molecule CR dyes even under high concentration of small molecule methyl orange (MO) dyes or 1 M of salt solution. The adsorption mechanism indicated that the –NH2 and –OH groups in adsorbent could generate the stronger electrostatic attraction with the –SO3- groups in CR. Meanwhile, the sufficient adsorption spaces of the adsorbent were constructed by the porous network structure of SiO2 aerogel, the accumulation of PDA particles and the porous structure of the multicomponent composite membrane. The work provided a proactive study in designing an adsorbent for the selective adsorption of organic dyes.  相似文献   
73.
Adsorptive separation of C2H6 from C2H4 by adsorbents is an energy-efficient and promising method to boost the polymer grades C2H4 production. However, that C2H6 and C2H4 display very similar physical properties, making their separation extremely challenging. In this work, by regulating the pore environment in a family of chitosan-based carbon materials (C-CTS-1, C-CTS-2, C-CTS-4, and C-CTS-6)- we target ultrahigh C2H6 uptake and C2H6/C2H4 separation, which exceeds most benchmark carbon materials. Explicitly, the C2H6 uptake of C-CTS-2 (166 cm3/g at 100 kPa and 298 K) has the second-highest adsorption capacity among all the porous materials. In addition, C-CTS-2 gives C2H6/C2H4 selectivity of 1.75 toward a 1:15 mixture of C2H6/C2H4. Notably, the adsorption enthalpies for C2H6 in C-CTS-2 are low (21.3 kJ/mol), which will facilitate regeneration in mild conditions. Furthermore, C2H6/C2H4 separation performance was confirmed by binary breakthrough experiments. Under different ethane/ethylene ratios, C-CTS-X extracts a low ethane concentration from an ethane/ethylene mixture and produces high-purity C2H4 in one step. Spectroscopic measurement and diffraction analysis provide critical insight into the adsorption/separation mechanism. The nitrogen functional groups on the surface play a vital role in improving C2H6/C2H4 selectivity, and the adsorption capacities depend on the pore size and micropore volume. Moreover, these robust porous materials exhibit outstanding stability (up to 800 °C) and can be easily prepared on a large scale (kg) at a low cost (~$26 per kg), which is very significant for potential industrial applications.  相似文献   
74.
Herein, we reported the fabrication of porous iron oxide/carbon black (P–Fe2O3/CB) composite through a two-step engineering method. At first, Prussian blue microcubes were used as a precursor and further calcined to form P–Fe2O3 microcubes. The intercalation of CB nanoparticles with P–Fe2O3 nanocubes was processed through the ultrasonication method. The obtained P–Fe2O3/CB were successfully scrutinized through various physiochemical characterization methods. The proposed P–Fe2O3/CB-modified glassy carbon electrode sensor was successfully implemented in the electrochemical sensing of chlorpromazine hydrochloride due to its very low charge transfer resistance (Rct) compared to the other electrode modifiers. The sensitive detection of CPMH through differential pulse voltammetry exemplifies an excellent electroanalytical performance such as a wide linear range of 0.5–1472 μM, a lower detection limit (0.001 μM), and an appraisable sensitivity of 1.99 μA/μM cm?2 due to its availability of a high number of active sites and its large surface area, respectively. It also expresses excellent selectivity, repeatability, reproducibility, and stability results. Moreover, the practical feasibility of the as-fabricated P–Fe2O3/CB/glassy carbon electrode sensor shows exquisite recovery (98.1–100.8%) results with an appraisable current response in various biological, pharmaceutical, and environmental samples.  相似文献   
75.
To investigate the effects of oxygen-containing functional groups on the adsorption of volatile organic compounds (VOCs) with different polarity, oxygen-rich porous carbon materials (OPCs) were synthesized by heat treatment of glucose/potassium oxalate material. The carbon material had a large specific surface area (1697 m2 g−1) and a high oxygen content (18.95 at.%). OPC exhibited high adsorption capacity of toluene (309 mg g−1) and methanol (447 mg g−1). The specific surface area and total pore volume determined the adsorption capacity of toluene and methanol at the high-pressure range, while the oxygen-containing groups became the main factor affecting the methanol adsorption at the low-pressure range due to the hydrogen bond interaction through the density functional theory (DFT) calculations. This study provides an important hint for developing a novel O-doped adsorbent for the VOCs adsorption applications and analyzing the role of oxygen-containing groups in the VOCs adsorption under the low-pressure range.  相似文献   
76.
Herein, we report the synthesis of new covalent organic polymer comprising triazine and o-tolidine by solvothermal method. The formation of polymer was confirmed by Fourier transform infra red spectroscopy (FT-IR), cross polarization–magic angle spinning nuclear magnetic resonance (NMR), transmission electron microscopy, and scanning electron microscopy. Their antibacterial activity toward S. aureus (gram-positive) and P. aeruginosa (gram-negative) was assessed by the optical density measurements and direct contact method. These results have great significance toward the design of new porous polymers for antibacterial applications.  相似文献   
77.
In the present work, the influence of porosity and boron on shear thickening behavior of hybrid mesoporous silica has been studied. Three different levels of boron modification were performed by varying the molar composition of boric acid viz., 1.5 mmol, 2.5 mmol, and 3.5 mmol in a co-condensation approach. The incorporation of boron in mesoporous silica network was confirmed by various techniques such as Fourier transform infra-red (FTIR), and 11B solid- state nuclear magnetic resonance (NMR) spectroscopy. The morphology and particle size were confirmed by using scanning and transmission electron microscopy. To evaluate the effect of boron and porosity on the shear thickening behavior, dispersions were prepared from mesoporous boron- modified silica (MSiB), control mesoporous silica (MSi), non-porous boron-modified silica (SiB), and control non-porous silica (Si) in polyethylene glycol. The shear thickening behavior was studied using steady shear rheology. The dispersion prepared from different loadings of synthesized MSiB containing 1.5 mmol boron showed more than 16 times increase in viscosity (657.7 Pa.s) compared to that of MSi (39.2 Pa.s) at a fairly low volume fraction (φ = 0.15) of silica. It is expected that the highly ordered mesoporous architecture of hybrid silica has improved the interaction between the particle and the dispersing medium through hydrogen bonding. The porous morphology of the hybrid mesoporous silica as well as the incorporation of boron in the silica network favors the formation of a frictional contact network, and a transition from continuous shear thickening (CST) to discontinuous shear thickening (DST) behavior was observed. Therefore, silica prepared via incorporation of boron as well as porosity can be material of interest in variety of applications, for example, soft body armors, sporting goods, and shear thickening electrolytes for high impact resistant batteries.  相似文献   
78.
The novel palladium nanoparticles (Pd@POPs) were successfully prepared with controllable sizes and dispersity through the introduction of H2PdCl4 into urea-linked porous organic polymers (POPs) in an aqueous environment followed by reducing Pd(II) to Pd(0) by NaBH4. The newly prepared Pd@POPs were thoroughly characterized by FT-IR, ICP-AES, BET, XRD, SEM and TEM. Furthermore, the catalytic reactivities of this novel Pd@POPs were investigated via Heck, Suzuki-Miyaura cross-coupling reaction and nitroarene reduction, and they exhibited superior catalytic performances in all these three reactions, producing the corresponding products in up to quantitative yields. Additionally, the Pd@POPs had excellent recyclability in both Heck and Suzuki-Miyaura cross-coupling reactions with the repeating time up to four times and ten times, respectively, along with no obvious decrease of catalytic reactivities.  相似文献   
79.
The spatial distribution of the liquid phase in a typical, partially filled, porous glass (VitraPor #5) has been examined with the aid of magnetic resonance microscopy and field gradient nuclear magnetic resonance diffusometry techniques. The correlation length of the material turned out to be long enough to permit the visualization of the microscopic heterogeneity of the material by magnetic resonance imaging. Contrasts are dominated by transverse relaxation depending on local filling degree, which in turn depends on local microstructure. The bimodal heterogeneity of the latter was also visualized by scanning electron microscopy. The effect of heterogeneity on an effective diffusion coefficient has been examined for polar (water) and nonpolar (cyclohexane) molecules.  相似文献   
80.
《印度化学会志》2021,98(9):100137
Numerous studies confirm that three dimensional porous Cu–Sn (3DP Cu–Sn) anode possesses good application prospect in light of its desirable electrochemical performance on lithium ion half cells, but there are a few related systematic researches on lithium ion full cells until now, which is indispensable before its commercialization. Herein, the effects of galvanostatic charge-discharge voltage range on the cycling stability of 3DP Cu–Sn anode for lithium ion full cells are investigated systematically. The results show that the suitable charge-discharge voltage range plays a key role in improving the reversible capacity and cycling stability of the 3DP Cu–Sn||LiCoO2 full cell, which is closely related to maintaining the electrode structure stable by controlling the amount of Li+ extracted and inserted. Especially, in the voltage range of 1.2–3.9 ​V, the full cell exhibits remarkably improved electrochemical properties with the high initial reversible capacity of 2.71 ​mAh cm−2 and 71.95% capacity retention upon 80 cycles. We believe that this work can provide a significant reference for the practical application of porous Sn-based anodes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号