首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   253篇
  免费   46篇
  国内免费   38篇
化学   221篇
晶体学   5篇
力学   31篇
综合类   1篇
物理学   79篇
  2024年   1篇
  2023年   1篇
  2022年   8篇
  2021年   13篇
  2020年   12篇
  2019年   12篇
  2018年   23篇
  2017年   19篇
  2016年   20篇
  2015年   10篇
  2014年   15篇
  2013年   39篇
  2012年   18篇
  2011年   19篇
  2010年   13篇
  2009年   11篇
  2008年   15篇
  2007年   10篇
  2006年   8篇
  2005年   10篇
  2004年   11篇
  2003年   10篇
  2002年   3篇
  2001年   4篇
  2000年   9篇
  1999年   1篇
  1998年   3篇
  1997年   4篇
  1996年   4篇
  1994年   5篇
  1990年   1篇
  1985年   1篇
  1983年   1篇
  1980年   2篇
  1979年   1篇
排序方式: 共有337条查询结果,搜索用时 15 毫秒
41.
利用双光束干涉法对点接触区乏脂润滑成膜特性规律以及接触区附近润滑剂的微观迁移特性进行了观测.在试验条件下,接触区会经历充分润滑—乏脂—沉积膜润滑—分离油润滑等润滑状态.借助原子力显微镜,探测到沉积膜是润滑脂的稠化剂被碾压破碎而沉积在滚压轨道表面的一层纳米级颗粒薄膜;而分离油是在剪切过程中润滑脂内逐渐释放基础油.试验初始,接触区周围的润滑脂池因乏脂而迅速消失,但分离油会逐渐形成"第二相油池"以实现回流补给.沉积膜增大了基础油在滚动轨道表面的接触角,阻碍回流补给,但其会随运动逐渐磨损,此后分离油将进入接触区补充润滑膜.初步发现,当分离油不充足时,沉积膜有利于保护润滑轨道.  相似文献   
42.
Model films of poly(ethylene terephthalate) were treated by oxygen plasma in order to quantify the etching rate and estimate the contribution of charged and neutral particles to the reaction probability. Model films with a thickness of 50 nm were deposited on a quartz crystal of a microbalance (QCM) by spin‐coating technique. The samples were exposed to oxygen plasma with the positive ion density of 4 × 1015 m?3 and neutral oxygen atom density of 6 × 1021 m?3. The etching rate was determined from the QCM signal and was 4.7 nm s?1. The etching was found rather inhomogeneous as the atomic force microscopic images showed an increase of the surface roughness as a result of plasma treatment. The model films were completely removed from the surface of the quartz crystals in about 12 s. Knowing the etching rate and the flux of oxygen atoms to the surface allowed for calculation of the reaction probability which was found to be rather low at the value of 1.6 × 10?4. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
43.
We have developed the transparent photoactive TiO2 thin film coated on soda lime glass (SLG) by sol-gel process. Titanium dioxide thin films coated on SLG exhibit lower photocatalytic activity due to the thermal diffusion of Na ion from the SLG substrate. Thin SiO2 film precoating is very effective to prevent the thermal diffusion of Na ion. We have evaluated the photocatalytic decomposition of gaseous acetaldehyde and the photo-induced surface wettability of TiO2 films with and without SiO2 precoating layer. As expected, the TiO2 film on SiO2/SLG is more photoactive to decompose acetaldehyde than that on SLG. However, as for wettability conversion, there was little difference in the conversion rate between TiO2 film without SiO2, and TiO2 film with SiO2. Different dependence of Na ion diffusion on two kinds of photo-induced reaction on TiO2 is discussed based on the difference of the photo-induced reaction mechanism.  相似文献   
44.
PANI‐PAN coaxial nanofibers have been prepared by electro‐spinning during polymerization. The surface of the resulting nanofibers is superhydrophobic with a water contact angle up to 164.5°. Conductivity of the PANI‐PAN nanofibers is about 4.3 × 10−2 S · cm−1. The superhydrophobic nanofibers show a chemical dual‐responsive surface wettability, which can be easily triggered by changing pH value or redox properties of the solution. A reversible conversion between superhydrophobicity and superhydrophilicity can be performed in a short time. The strategy used here may provide an easy method to control the wettability of smart surfaces by using properties of low‐cost functional polymers.

  相似文献   

45.
A superhydrophobic polyaniline (PANI)‐coated fabric was prepared by in‐situ doping polymerization in the presence of perfluorosebacic acid (PFSEA) as the dopant. It is found that the PANI‐coated fabric undergoes a change in wettability from superhydrophobic (doped state) to superhydrophilic (de‐doped state) when it is exposed to ammonia gas. In particular, a reversible wettability of the PANI‐fabric is observed when it is doped with PFSEA and de‐doped with ammonium gas. It is proposed that the coordination effect of the pore structure of the polyester fabric, low surface energy of the PFSEA dopant, and reversible doping/dedoping characteristics of PANI results in the reversible wettability of the PANI‐coated fabric from superhydrophobicity to superhydrophilicity. Moreover, the tactic used here may provide a new method to monitor the toxic gas.

  相似文献   

46.
管自生  张强 《化学学报》2005,63(10):880-884
利用脉冲激光在Si表面刻蚀具有不同宽度和深度的微槽形貌, 通过测量接触角的大小研究其浸润特性, 并分析了形貌与浸润性的关系. 结果表明, 在Si表面刻蚀微槽深度一定的条件下, 刻蚀微槽宽度越宽, 接触角越小; 在Si表面刻蚀微槽宽度一定的条件下, 刻蚀微槽越深, 接触角越大, 最高可达165°. 而且Si表面上刻蚀后产生的细微尖峰结构对其浸润特性有显著的影响. 因此, 利用激光刻蚀表面方法可以在一定程度上调控固体表面的润湿性能.  相似文献   
47.
Cellular polymers constitute an important field of investigation due to their unique properties as shock absorbers and thermal or acoustic insulators. The knowledge of the wetting properties of these materials is important in applications where adhesion or weathering behavior are an issue. In this study, cellular polyurethane polymers were used to investigate the effect of the cellular structure on the wetting properties. The polymeric substrates were analyzed by scanning electron microscopy and the wetting properties were studied by goniometry. The contact angles of water and diiodomethane were measured as a function of time and the surface tension of the expanded polymers was evaluated by the geometric and harmonic mean methods. It was found that the wettability and the surface energy of the cellular polymers increase as the density decreases. © 1997 John Wiley & Sons, Inc.  相似文献   
48.
采用分子动力学模拟研究纳米尺度下壁面润湿性对毛细流动的影响,主要考虑纳米通道两侧壁面润湿性相同与不同两种情况。研究表明:两侧壁面润湿性相同条件下,毛细流动随着壁面润湿性增强而加快, 毛细高度随时间的变化早期偏离Lucas-Washburn理论,但后期与其预测符合。在纳米通道两侧壁面润湿性不同的情况下,液面会发生振荡,两侧壁面毛细高度也不相等,且液面振荡的幅度和两侧壁面毛细高度差都随着两侧壁面润湿性差异的增大而增大。基于能量转化分析,提出两侧壁面湿润性不同情况下纳米通道中毛细流动发生的条件以及毛细流动快慢的判别依据。研究结果加深了对纳米尺度下毛细流动机理的认识,并为相关工程应用提供理论参考。  相似文献   
49.
The isothermal single-component multi-phase lattice Boltzmann method(LBM) combined with the particle motion model is used to simulate the detailed process of liquid film rupture induced by a single spherical particle.The entire process of the liquid film rupture can be divided into two stages.In Stage 1,the particle contacts with the liquid film and moves into it due to the interfacial force and finally penetrates the liquid film.Then in Stage 2,the upper and lower liquid surfaces of the thin film are driven by the capillary force and approach to each other along the surface of the particle,resulting in a complete rupture.It is found that a hydrophobic particle with a contact angle of 106.7° shows the shortest rupture duration when the liquid film thickness is less than the particle radius.When the thickness of the liquid film is greater than the immersed depth of the particle at equilibrium,the time of liquid film rupture caused by a hydrophobic particle will be increased.On the other hand,a moderately hydrophilic particle can form a bridge in the middle of the liquid film to enhance the stability of the thin liquid film.  相似文献   
50.
With the continuous improvement in living standards, the discharge of oily sewage in daily life and industry has gradually increased, causing considerable damage to the environment and also great inconvenience to people. Traditional treatment methods cannot meet the increasing demand for sewage treatment, so more efficient treatment methods need to be studied. Research on oil–water separation materials is gradually becoming intelligent, but most of these intelligent materials cannot solve the problem of bacterial growth on the surface, new antibacterial and hydrophobic materials need to be studied. Here, an inexpensive and simple method is presented to prepare an antibacterial copper mesh with pH-responsive wettability between hydrophilic and hydrophobic. First, a copper mesh with a rough surface was prepared by an oxidation method, and then the oxidized copper mesh was immersed in the prepared coating solution of stearate (SA)-TiO2 to obtain a superhydrophobic copper mesh. Scanning electron microscopy analysis showed that the modified copper mesh changed from the original smooth surface to a rough surface covered with needle-like nano-oxide wires. The SA-TiO2-coated copper mesh (STCM) has good separation efficiency (about 97%) and separation flux (about 1.1 × 105 L·m−2·h−1) for the immiscible oil–water mixture, the separation efficiency remained basically unchanged (about 97%) after 15 separation cycles, and the wettability of this can be changed by soaking in an alkaline solution at a specific pH (from 12 to 14). In addition, the prepared STCM showed good antibacterial properties against Staphylococcus aureus and Escherichia coli. This preparation strategy of STCM provides a low-cost and facile method for wastewater treatment in practical applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号