首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10961篇
  免费   1902篇
  国内免费   1851篇
化学   12371篇
晶体学   220篇
力学   77篇
综合类   81篇
数学   107篇
物理学   1858篇
  2024年   58篇
  2023年   160篇
  2022年   446篇
  2021年   732篇
  2020年   1035篇
  2019年   726篇
  2018年   577篇
  2017年   532篇
  2016年   782篇
  2015年   703篇
  2014年   701篇
  2013年   995篇
  2012年   732篇
  2011年   652篇
  2010年   534篇
  2009年   517篇
  2008年   474篇
  2007年   479篇
  2006年   418篇
  2005年   395篇
  2004年   352篇
  2003年   308篇
  2002年   876篇
  2001年   234篇
  2000年   180篇
  1999年   140篇
  1998年   167篇
  1997年   121篇
  1996年   117篇
  1995年   86篇
  1994年   94篇
  1993年   49篇
  1992年   71篇
  1991年   45篇
  1990年   62篇
  1989年   43篇
  1988年   23篇
  1987年   13篇
  1986年   21篇
  1985年   12篇
  1984年   14篇
  1983年   6篇
  1982年   12篇
  1981年   8篇
  1980年   1篇
  1979年   5篇
  1978年   2篇
  1977年   3篇
  1973年   1篇
排序方式: 共有10000条查询结果,搜索用时 109 毫秒
11.
A new amino‐functionalized strontium–carboxylate‐based metal–organic framework (MOF) has been synthesized that undergoes single crystal to single crystal (SC‐to‐SC) transformation upon desolvation. Both structures have been characterized by single‐crystal X‐ray analysis. The desolvated structure shows an interesting 3D porous structure with pendent ?NH2 groups inside the pore wall, whereas the solvated compound possesses a nonporous structure with DMF molecules on the metal centers. The amino group was postmodified through Schiff base condensation by pyridine‐2‐carboxaldehyde and palladium was anchored on that site. The modified framework has been utilized for the Suzuki cross‐coupling reaction. The compound shows high activity towards the C?C cross‐coupling reaction with good yields and turnover frequencies. Gas adsorption studies showed that the desolvated compound had permanent porosity and was microporous in nature with a BET surface area of 2052 m2 g?1. The material also possesses good CO2 (8 wt %) and H2 (1.87 wt %) adsorption capabilities.  相似文献   
12.
In many organic electronic devices functionality is achieved by blending two or more materials, typically polymers or molecules, with distinctly different optical or electrical properties in a single film. The local scale morphology of such blends is vital for the device performance. Here, a simple approach to study the full 3D morphology of phase‐separated blends, taking advantage of the possibility to selectively dissolve the different components is introduced. This method is applied in combination with AFM to investigate a blend of a semiconducting and ferroelectric polymer typically used as active layer in organic ferroelectric resistive switches. It is found that the blend consists of a ferroelectric matrix with three types of embedded semiconductor domains and a thin wetting layer at the bottom electrode. Statistical analysis of the obtained images excludes the presence of a fourth type of domains. The criteria for the applicability of the presented technique are discussed. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1231–1237  相似文献   
13.
Rupestonic acid, a potential anti‐influenza agent, is an important and characteristic compound in Artemisia rupestris L., a well‐known traditional Uighur medicine for the treatment of colds. In the present study, high‐performance liquid chromatography combined with electrospray ionization quadrupole time‐of‐flight tandem mass spectrometry was used to detect and identify the metabolites in rat urine after oral administration of rupestonic acid. A total of 10 metabolites were identified or partially characterized. The structure elucidations of the metabolites were performed by comparing the changes in accurate molecular masses and fragment ions with those of the parent compound. The results showed that the main metabolites of rupestonic acid in rat urine were formed by oxidation, hydrogenation and glucuronidation. A metabolism pathway was proposed for the first time based on the characterized structures. This metabolism study can provide essential information for drug discovery, design and clinical application of rupestonic acid. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
14.
This review provides a comprehensive evaluation of solidified floating organic drop microextraction (SFODME) procedures for metal ions preconcentration and their contributions to green chemistry. In this article we focused on the modifications that have been performed in the recent years to improve this environmentally friendly procedure. Among the most important of these modifications are the inclusion of ultrasonic energy, vortex and air agitation to enhance the dispersion process. The article also discussed new challenges in the procedure by using more ecofriendly solvents as extractants such as ionic liquids, deep eutectic. and supramolecular solvents. The coupling of SFODME with solid phase extraction increases selectivity and efficiency of the preconcentration procedure.  相似文献   
15.
16.
Over the past two decades, advanced materials with hollow interiors have received significant attention in materials research owing to their great application potential across a vast number of technological fields. Though with great difficulty, multi-shelled hollow metal–organic frameworks (MSHMs) have also been successfully synthesized in recent years. Herein, a rational shell-by-shell soft-templating protocol has been devised to fabricate highly uniform multi-shelled hollow cobalt-imidazole-based MOF (ZIF-67). For the first time, it has become possible to endow mesoporosity to this new type of functional material (i.e., mesoporous MOFs). When used as carrier materials in catalytic reactions, in principle, these mesoporous MSHMs with high surface area not only improve the dispersity of metal nanoparticles (NPs), but also efficiently facilitate the mass diffusion of the reactions, resulting in enhanced catalyst activity. Moreover, the obtained MSHMs/M nanocomposites serve as base-metal bifunctional catalysts for one-pot oxidation-Knoevenagel condensation cascade reaction, in which the MSHMs itself serves as a pristine active catalyst in addition to its role of catalyst support. The results demonstrate that excellent multifunctional catalysts can be achieved via preparing intrinsically microporous bulk MOFs into extrinsically mesoporous MSHMs which possess many structural merits that conventional bulk MOFs do not have.  相似文献   
17.
The Pd‐catalyzed polycondensation of 4‐octylaniline with various dibromoarylenes was carried out under microwave heating. Microwave heating led to a decrease in the reaction time and an increase in the molecular weight of the polymers as compared to conventional heating. Microwave heating also allowed the catalyst loading to be reduced to 1 mol %, yielding polymerization results that were comparable to those under conventional heating and 5 mol % catalyst. Investigations regarding field‐effect transistors and organic photovoltaic cells using the obtained poly(arylamine) with azobenzene units revealed that increasing the molecular weight of the polymer led to improved device performance, including hole mobility and power conversion efficiency. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 536–542  相似文献   
18.
An innovative volatolomic approach employs the detection of biomarkers present in cerumen (earwax) to identify cattle intoxication by Stryphnodendron rotundifolium Mart., Fabaceae (popularly known as barbatimão). S. rotundifolium is a poisonous plant with the toxic compound undefined and widely distributed throughout the Brazilian territory. Cerumen samples from cattle of two local Brazilian breeds (‘Curraleiro Pé-Duro’ and ‘Pantaneiro’) were collected during an experimental intoxication protocol and analyzed using headspace (HS)/GC–MS followed by multivariate analysis (genetic algorithm for a partial least squares, cluster analysis, and classification and regression trees). A total of 106 volatile organic metabolites were identified in the cerumen samples of bovines. The intoxication by S. rotundifolium influenced the cerumen volatolomic profile of the bovines throughout the intoxication protocol. In this way, it was possible to detect biomarkers for cattle intoxication. Among the biomarkers, 2-octyldecanol and 9-tetradecen-1-ol were able to discriminate all samples between intoxicated and nonintoxicated bovines. The cattle intoxication diagnosis by S. rotundifolium was accomplished by applying the cerumen analysis using HS/GC–MS, in an easy, accurate, and noninvasive way. Thus, the proposed bioanalytical chromatography protocol is a useful tool in veterinary applications to determine this kind of intoxication.  相似文献   
19.
A combined experimental and computational approach was used to distinguish between different polymorphs of the pharmaceutical drug aspirin. This method involves the use of ab initio random structure searching (AIRSS), a density functional theory (DFT)-based crystal structure prediction method for the high-accuracy prediction of polymorphic structures, with DFT calculations of nuclear magnetic resonance (NMR) parameters and solid-state NMR experiments at natural abundance. AIRSS was used to predict the crystal structures of form-I and form-II of aspirin. The root-mean-square deviation between experimental and calculated 1H chemical shifts was used to identify form-I as the polymorph present in the experimental sample, the selection being successful despite the large similarities between the molecular environments in the crystals of the two polymorphs.  相似文献   
20.
Guided by the self-penetrating features can improve the stability of metal organic frameworks (MOFs), an unprecedented 3D self-penetrated framework, {[Zn (tptc)0.5(bimb)]·H2O}n ( NUC-6 , here NUC corresponding to North University of China), with 3D (4,4)-c {86} net, was designed. Benefit from the high chemical stability and excellent luminescent property, NUC-6 can be act as an efficient multi-response chemo-sensor in detecting dichloronitroaniline pesticide and nitrofuran antibiotics in water with the detection limits are 116 ppb for DCN pesticide, 16 ppb for NFT antibiotic, and 12 ppb for NTZ antibiotic. Besides, the mechanisms of luminescence quenching were revealed from the viewpoint of internal filter effect (IFE) and photo-induced electron transfer (PET), implied by the optical spectroscopy and quantum chemical calculation. This work provides a promising strategy to design stable MOFs by improving the self-penetrating features and to expand their practical applications in the detection of organic pollutants in aqueous medium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号