首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liquid-liquid extraction (LLE) has been widely used as a pre-treatment technique for separation and preconcentration of organic analytes from aqueous samples. Nevertheless, this technique has several drawbacks, mainly in the use of large volumes of solvents, making LLE an expensive, environmentally-unfriendly technique.Miniaturized methodologies [e.g., liquid-phase microextraction (LPME)] have arisen in the search for alternatives to conventional LLE, using negligible volumes of extracting solvents and reducing the number of steps in the procedure. Developments have led to different approaches to LPME, namely single-drop microextraction (SDME), hollow-fiber LPME (HF-LPME), dispersive liquid-liquid microextraction (DLLME) and solidified floating organic drop microextraction (SFODME).This overview focuses on the application of these microextraction techniques to the analysis of emerging pollutants.  相似文献   

2.
As the drive towards green extraction methods has gained momentum in recent years, it has not always been possible to eliminate organic solvents completely. However, the volumes employed have been reduced remarkably, so that a single microdrop is sufficient in some cases. This effort has led to the development of various liquid phase microextractions namely single drop microextraction (SDME), hollow fiber liquid phase microextraction (HF-LPME), dispersive liquid-liquid microextraction (DLLME) and solidified floating organic drop microextraction (SFODME). In this review, the historical development and overview of these miniaturized liquid phase extraction methodologies have briefly been discussed and a comprehensive collection of application of the these methods in combination with different analytical techniques for preconcentration and determination of ultra trace amounts of metals and organometal ions in various matrices have been summarized.  相似文献   

3.
A simple and selective method for the separation and preconcentration of cadmium in water samples based on solidified floating organic drop microextraction (SFODME) was developed. The cadmium ion in aqueous solution was converted to CdI42− and was then extracted with 160 μL of 1-undecanol containing cationic surfactant of methyltrioctylammonium chloride (0.2 mol/L). When the extraction was completed, the sample vial was cooled in an ice bath for 5 min. The solidified extract was transferred into a conical vial where it melted immediately. It was then diluted to 250 μL upon addition of ethanol, and 100 μL of it was analyzed by flow injection flame atomic absorption spectrometry (FI-FAAS).Factors that influence the extraction and ion pair formation, such as pH, concentration of iodide and methyltrioctylammonium chloride, extraction time, sample volume, and ionic strength were optimized. Under the optimized conditions, a preconcentration factor of 640, detection limit of 0.0079 μg/L and good relative standard deviation of ±5.4% at 5 μg/L were obtained. The procedure was applied to tap water, well water, and sea water; and accuracy was assessed through recovery experiment and independent analysis by graphite atomic absorption spectrometry. The accuracy was also evaluated through analyses of certified reference ore.  相似文献   

4.
In this work, a procedure for preconcentration of cobalt using dispersive liquid–liquid microextraction (DLLME) with the reagent Br-TAO as complexing reagent was developed. The procedure is based on a ternary system of solvents, where appropriate amounts of the extraction solvent, disperser solvent and the chelating agent Br-TAO are directly injected into an aqueous solution containing Co(II). A cloudy mixture is formed and the ions are extracted in the fine droplets of the extraction solvent. After extraction, the phase separation is performed with a rapid centrifugation, and cobalt is determined in the enriched phase by FAAS. Under the optimized conditions, the detection limit obtained was 0.9 µg L− 1. The enrichment factor and the consumptive index were 16 and 0.31 mL, respectively. The accuracy of the method was tested by the determination of cobalt in certified reference material of spinach leaves, NIST 1570a. The proposed procedure was successfully applied to the determination of cobalt in water samples.  相似文献   

5.
Arpa Şahin C  Durukan I 《Talanta》2011,85(1):657-661
In this article, a new ligandless solidified floating organic drop microextraction (LL-SFODME) method has been developed for preconcentration of trace amount of cadmium as a prior step to its determination by flow injection-flame atomic absorption spectrometry (FI-FAAS). The methodology is based on the SFODME of cadmium with 1-dodecanol in the absence of chelating agent. Several factors affecting the microextraction efficiency, such as, pH, sodium dodecylbenzenesulfonate (SDBS) concentration, extraction time, stirring rate and temperature were investigated and optimized. Under optimized experimental conditions an enhancement factor of 205 was obtained for 100 mL of sample solution. The calibration graph was linear in the range of 1.0-25.0 ng mL−1, the limit of detection (3s) was 0.21 ng mL−1 and the limit of quantification (10s) was 0.62 ng mL−1. The relative standard deviation (RSD) for 10 replicate measurements of 10 ng mL−1 cadmium was 4.7%. The developed method was successfully applied to the extraction and determination of cadmium in standard and several water samples and satisfactory results were obtained.  相似文献   

6.
In this study, an efficient preconcentration method was presented that is based on dispersive liquid-liquid microextraction taking the advantage of newly synthesized phosphonium deep eutectic solvents used as extractants and ultrasound probe as a dispersing agent. The extracts obtained were analyzed by high-performance liquid chromatography. To optimize the five most important factors for the microextraction procedure a central composite design plan was used. Under optimal conditions (140 μl of extractant, 60 mg of NaCl, pH = 2.0, 120 s of extraction time with ultrasound probe as the dispersing agent, 16 min of centrifugation for phase separation), the proposed method allowed to achieve good precision with RSD between 3.2% and 9.7% at 1.0, 5.0 and 40.0 ng ml levels. The preconcentration factors were equal to 42, 39, and 41, and the limits of detection 0.128, 0.103, and 0.135 ng/ml for dicamba, 2-methyl-4-chlorophenoxyacetic acid, and 2-methyl-4-chlorophenoxypropionic acid, respectively. The proposed method was successfully applied for the determination of chlorophenoxy acid herbicides in water samples from drainage ditches with a good recovery in the range of 70%–93%.  相似文献   

7.
Solidified floating organic drop microextraction (SFODME) in combination with high performance liquid chromatography was used for separation/preconcentration and determination of carbamazepine (CBZ) in human plasma and urine samples. Parameters that affect the extraction efficiency such as the type and volume of extraction solvent, ionic strength, sodium hydroxide concentration, stirring rate, sample volume and extraction time, were investigated and optimized. Under the optimum conditions (extraction solvent, 40 μL of 1-undecanol; sodium hydroxide concentration, 1 mol/L; temperature, 50 ℃; stirring speed, 400 r/min; sample volume, 8 mL; sodium chloride concentration, 3% (w/v) and extraction time, 60 min) the calibration curve was found to be linear in the mass concentration range of 0.4-700.0 μg/L. The limit of detection (LOD) was 0.1 μg/L and the relative standard deviation (RSD) for six replicate extraction and determination of carbamazepine at 100 μg/L level was found to be 4.1%. The method was successfully applied to the determination of CBZ in human plasma and urine samples.  相似文献   

8.
A new, rapid, and efficient microextraction technique named vortex‐assisted natural deep eutectic solvent microextraction has been developed for the preconcentration and determination of orthophosphate in real water samples. The method is based on the formation of the phosphomolybdenium blue complex followed by proposed microextraction procedure and subsequent spectrophotometric determination in a microcell. Screening study for the optimal composition of natural deep eutectic solvent was initially performed with different solvents, including choline chloride as hydrogen bond acceptor and different hydrogen bond donors. A ternary mixture of glucose‐choline chloride‐water was used as the most efficient extraction solvent. Response surface methodology based on the central composite design was used to optimize experimental parameters. Under optimal conditions, the calibration graph for orthophosphate determination was linear over the range of 2.0–80.0 µg/L (correlation coefficient of 0.9971) with a detection limit of 0.2 µg/L. The repeatability, reproducibility, and relative error values of the method were below 7%, indicating acceptable precision and accuracy. This approach, using natural deep eutectic solvent as an eco‐friendly solvent with high solubilization power and vortex mixing as an alternative energy source, represents a promising choice for a green separation and preconcentration methodology for determination of orthophosphate in real water samples.  相似文献   

9.
Liquid–liquid extraction (LLE) is widely used as a pre-treatment technique for separation and preconcentration of both organic and inorganic analytes from aqueous samples. Nevertheless, it has several drawbacks, such as emulsion formation or the use of large volumes of solvents, which makes LLE expensive and labour intensive. Therefore, miniaturization of conventional liquid–liquid extraction is needed. The search for alternatives to the conventional LLE using negligible volumes of extractant and the minimum number of steps has driven the development of three new miniaturized methodologies, i.e. single-drop microextraction (SDME), hollow fibre liquid-phase microextraction (HF-LPME) and dispersive liquid–liquid microextraction (DLLME). The aim of this paper is to provide an overview of these novel preconcentration approaches and their potential use in analytical labs involved in inorganic (ultra)trace analysis and speciation. Relevant applications to the determination of metal ions, metalloids, organometals and non-metals are included.  相似文献   

10.
Single drop microextraction (SDME) has emerged over the last 10–15 years as one of the simplest and most easily implemented forms of micro-scale sample cleanup and preconcentration. In the most common arrangement, an ordinary chromatography syringe is used to suspend microliter quantities of extracting solvent either directly immersed in the sample, or in the headspace above the sample. The same syringe is then used to introduce the solvent and extracted analytes into the chromatography system for identification and/or quantitation. This review article summarizes the historical development and various modes of the technique, some theoretical and practical aspects, recent trends and selected applications.  相似文献   

11.
Single-drop microextraction (SDME) has been recognized as one of the simple miniaturized sample preparation tools for the isolation and preconcentration of several analytes from a complex sample matrix. In this review, we explored the applications of SDME coupled with various analytical techniques (spectroscopy, chromatography, and mass spectrometry) for the analysis of organic molecules, inorganic ions, and biomolecules from various sample matrices including food, environmental, clinical, pharmaceutical, and industrial samples. Also, it summarizes the use of nanoparticles in SDME combined with various analytical tools for the rapid analysis of several trace-level target analytes. An overview of ionic liquids, deep eutectic solvents, and SUPRAS, which improved the selectivity and sensitivity of various analytical techniques toward several analytes, as promising extracting solvent systems in SDME is also included. Finally, discussed the impressive analytical features and future perspectives of SDME in this review article.  相似文献   

12.
《Analytical letters》2012,45(2):262-272
Abstract

Hydrophobic deep eutectic solvents (DESs) were synthesized and developed for the preconcentration of three chlorophenols from wastewater by dispersive liquid–liquid microextraction (DLLME). The analyte concentrations were determined by high-performance liquid chromatography (HPLC). The hydrophobic DESs were prepared with the combination of hydrogen bond donors of decanoic acid or octanoic acid with different hydrogen bond acceptors of quaternary ammonium salts of tetrabutylammonium chloride, tetraoctylammonium chloride, methyltrioctylammonium chloride, and tetraheptylammonium chloride). Following the study of the stability and characterization by Fourier transform infrared spectroscopy, the hydrophobic DESs were developed as extractants and employed for the removal of 4-chlorophenol (4-CP), 2,4-dichlorophenol (2,4-DCP), and 2,4,6-trichlorophenol (2,4,6-TCP) from wastewater. Using hydrophobic DESs as the microextraction solvents, several key parameters were optimized, including the type and volume of the hydrophobic DES, pH, and time of the extraction procedure. Under the optimized conditions, good recoveries from 90.8% to 93.0% were obtained for the three chlorophenols. The limits of detection were less than 0.05?µg/mL with relative standard deviations between 1.8% and 3.1%. The method was applied for the isolation and determination of synthetic chlorophenols in wastewater.  相似文献   

13.
A liquid phase microextraction method-based conformation of supramolecular assembly was developed for the separation and preconcentration of trace levels of Sudan blue II. Various analytical parameters such as pH, supramolecular solvent type and volume, sample volume and matrix effect etc. were optimised. Sudan blue II concentration in the extraction phase was determined by UV-visible spectrophotometer. Under the optimised conditions, detection limit and preconcentration factor was found as 2.16 µg L?1 and 80, respectively. Relative standard deviation value was found 5%. The developed procedure was successfully applied for the determination of trace levels of Sudan blue II in environmental samples.  相似文献   

14.
Anthemidis AN  Ioannou KI 《Talanta》2011,84(5):1215-1220
A novel, simple and efficient sequential injection (SI) on-line dispersive liquid-liquid microextraction (DLLME) procedure was described and was demonstrated for the assay of trace silver determination by flame atomic absorption spectrometry (FAAS). Fatty alcohols, such as 1-undecanol and 1-dodecanol, were examined as extraction solvents at microlitre volume, overcoming a major problem of the DLLME methods, the high toxicity of the extraction solvents used. Furthermore, the extractant fine droplets can be easily separated from the aqueous phase using a micro-column packed with a novel hydrophobic sorbent material, poly(etheretherketone)-turnings. In this method fine droplets of 1-dodecanol were on-line generated and dispersed into the stream of aqueous sample. By this continuous process, silver diethyldithiocarbamate (Ag-DDTC) complex was formed and extracted into the dispersed extraction solvent. No specific conditions such as ice bath for low temperature or special tools are required for extractant isolation. All significant parameters that influence the efficiency of the system such as sample acidity, concentration of complexing reagent and extraction solvent, flow-rate of disperser and sample solution as well as the preconcentration time were investigated and optimized by full factorial design. Under the optimized conditions a detection limit of 0.15 μg L−1, a relative standard deviation (RSD) of 2.9% at 5.00 μg L−1 Ag(I) concentration level and an enhancement factor of 186 were obtained. The developed method was evaluated by analyzing certified reference material and was applied successfully to the analysis of environmental water samples.  相似文献   

15.
Dispersive liquid–liquid microextraction using deep eutectic solvents, as novel extraction solvents, was developed for the separation, preconcentration, and determination of chlorophenol, 2,3-dihydroxybenzoic acid, p-cresol, 4-chlorophenol, 2,4-dichlorophenol, and 2,4,6-trichlorophenol in vegetable oil. Seven deep eutectic solvents composed of choline chloride and different hydrogen bond donors (ethyl glycol, glycerol, 1,2-butanediol, 1,4-butanediol, 1,6-hexanediol, urea, and acetic acid) were characterized. The deep eutectic solvents formed by choline chloride-1,6-hexanediol in a 1:2 molar ratio provided the highest extraction efficiency. The sonication time, deep eutectic solvent volume, and disperser solvent were optimized. Under the optimal conditions of a sonication time of 11?min, a deep eutectic solvent volume of 90?µL, and acetone as the disperser solvent, extraction recoveries from 76.1 to 88.3% were obtained with 8.46 to 9.46 enrichment factors and the limits of detection exceeding 0.1?µg/mL with the relative standard deviations from 1.0 to 3.5%. This method using dispersive liquid–liquid microextraction with deep eutectic solvents is simple and provides high enrichment.  相似文献   

16.
Simplicity, effectiveness, swiftness, and environmental friendliness – these are the typical requirements for the state of the art development of green analytical techniques. Liquid phase microextraction (LPME) stands for a family of elegant sample pretreatment and analyte preconcentration techniques preserving these principles in numerous applications. By using only fractions of solvent and sample compared to classical liquid–liquid extraction, the extraction kinetics, the preconcentration factor, and the cost efficiency can be increased. Moreover, significant improvements can be made by automation, which is still a hot topic in analytical chemistry. This review surveys comprehensively and in two parts the developments of automation of non-dispersive LPME methodologies performed in static and dynamic modes. Their advantages and limitations and the reported analytical performances are discussed and put into perspective with the corresponding manual procedures. The automation strategies, techniques, and their operation advantages as well as their potentials are further described and discussed.  相似文献   

17.
The supramolecular solvent system consists of tetrahydrofuran (THF) and 1-decanol, that was used as an extraction solvent for a microextraction procedure for the preconcentration and separation of Co(II). The proposed supramolecular-based procedure was combined with microsampling flame atomic absorption spectrometry for the determination of cobalt at trace levels in water samples. N-Benzoyl-N,N-diisobutylthiourea was used to chelate Co(II) in an aqueous solution. Quantitative extraction efficiency was obtained at pH 6.5. The effects of analytical parameters including pH, amount of ligand, type, ratio and volume of supramolecular solvent, sample volume and interfering ions were investigated for optimisation of the procedure. The proposed supramolecular solvent-based microextraction procedure (Ss-ME) exhibits a limit of detection (LOD) of 1.29 µg L?1 and a limit of quantification (LOQ) of 3.88 µg L?1. The procedure was validated by addition/recovery tests and by applying TMDA 64.2 and TMDA 53.3 water certified reference materials. The microextraction method was successfully applied for the preconcentration and determination of cobalt in water samples.  相似文献   

18.
Single drop microextraction (SDME) is a convenient and powerful preconcentration and sample cleanup method for capillary electrophoresis (CE). In SDME, analytes are typically extracted from a sample donor solution into an acceptor drop hanging at the inlet tip of a capillary. The enriched drop is then introduced to the capillary for CE analysis. Since the volume of the acceptor drop can be as small as a few nanoliters, the consumption of solvents can be minimized and the preconcentration effect is enhanced. In addition, by covering the acceptor phase with an organic layer or by using an organic acceptor phase, inorganic ions such as salts in the sample solution can be blocked from entering the acceptor phase, providing desalting effects. Here, we describe the basic principles and instrumentation for SDME and its coupling with CE. We also review recent developments and applications of SDME-CE.  相似文献   

19.
In this article, a new ligandless dispersive liquid-liquid microextraction method has been developed for preconcentration of trace quantities of silver as a prior step to its determination by flame atomic absorption spectrometry. In the proposed approach, carbon tetrachloride and ethanol were used as extraction and dispersive solvents. Several factors that may be affected on the extraction process, like, extraction solvent, disperser solvent, the volume of extraction and disperser solvent, pH of the aqueous solution and extraction time were optimized. Under the optimal conditions, the calibration curve was linear in the range of 5.0 ng mL−1 to 2.0 μg mL−1 of silver with R2 = 0.9995 (n = 9) and detection limit based on three times the standard deviation of the blank (3Sb) was 1.2 ng mL−1 in original solution. The relative standard deviation for eight replicate determination of 0.5 μg mL−1 silver was ±1.5%. The high efficiency of dispersive liquid-liquid microextraction to carry out the determination of silver in complex matrices was demonstrated. The proposed method has been applied for determination of trace amount of silver in standard and water samples with satisfactory results.  相似文献   

20.
A liquid-phase microextraction (LPME) method was employed for preconcentration of selenium as piazselenol complex in aqueous samples. The samples reacted with o-phenylenediamine in 0.1?M HCl at 90°C for 15?min, and then LPME was performed. A microdrop of carbon tetrachloride was applied as the extracting solvent. After extraction, the microdrop was introduced directly into the injection port of gas chromatography for analysis. Several important extraction parameters such as the type of organic solvent, sample and organic drop volumes, salt concentration, stirring rate, and exposure time were controlled and optimized. In the proposed LPME, the extraction was achieved by suspending a 3?µL carbon tetrachloride drop from the tip of a microsyringe immersed in 12.5?mL of aqueous solution. Under optimized conditions, a dynamic linear range was obtained in the range of 20–1000?µg?L?1. The preconcentration factor and the limit of detection of selenium in this method were 91 and 0.9?µg?L?1, respectively. The optimized procedure was successfully applied to the extraction and determination of selenium in different types of real samples. The relative standard deviations for the spiking levels of 50–100?µg?L?1 in the real samples were in the range of 3.2–6.1%, and the relative errors were located in the range of ?5.4 to 5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号