首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116772篇
  免费   9533篇
  国内免费   14428篇
化学   88672篇
晶体学   1488篇
力学   3333篇
综合类   1042篇
数学   13588篇
物理学   32610篇
  2024年   117篇
  2023年   918篇
  2022年   1727篇
  2021年   2528篇
  2020年   3122篇
  2019年   2981篇
  2018年   2575篇
  2017年   3539篇
  2016年   4021篇
  2015年   3480篇
  2014年   4670篇
  2013年   9036篇
  2012年   7892篇
  2011年   6837篇
  2010年   5749篇
  2009年   7509篇
  2008年   7763篇
  2007年   8074篇
  2006年   7285篇
  2005年   6227篇
  2004年   5831篇
  2003年   4920篇
  2002年   5979篇
  2001年   3647篇
  2000年   3403篇
  1999年   3062篇
  1998年   2682篇
  1997年   2134篇
  1996年   1839篇
  1995年   1754篇
  1994年   1520篇
  1993年   1262篇
  1992年   1199篇
  1991年   797篇
  1990年   664篇
  1989年   632篇
  1988年   479篇
  1987年   384篇
  1986年   354篇
  1985年   293篇
  1984年   308篇
  1983年   160篇
  1982年   247篇
  1981年   186篇
  1980年   202篇
  1979年   188篇
  1978年   165篇
  1977年   100篇
  1976年   86篇
  1973年   50篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
61.
The density functional theory calculation of 1H and 13C NMR chemical shifts in a series of ten 10 classically known Strychnos alkaloids with a strychnine skeleton was performed at the PBE0/pcSseg-2//pcseg-2 level. It was found that calculated 1H and 13C NMR chemical shifts provided a markedly good correlation with experiment characterized by a mean absolute error of 0.08 ppm in the range of 7 ppm for protons and 1.67 ppm in the range of 150 ppm for carbons, so that a mean absolute percentage error was as small as ~1% in both cases.  相似文献   
62.
In this review, methods to obtain the orientational order of topologically variant molecular mesogens using by one- and two-dimensional (2D) solid-state 13C nuclear magnetic resonance (NMR) spectroscopy are described. Besides 13C chemical shifts, the 13C─1H dipolar couplings measured from 2D-separated local field (SLF) technique are used for computing the order parameters of a variety of mesogens. The investigated molecules are composed of a variable number of rings in the core, that is, core ranging from simply one ring to five rings. Among the mesogens investigated, a special focus has been placed on mesogens with thiophene rings, which are gaining popularity as liquid crystalline organic semiconductors. The replacement of a phenyl ring by thiophene in the core has a dramatic influence on molecular topology, as observed from the measured order parameters. The review highlights the advantages of the 2D SLF method for understanding the local dynamics and for mapping the topology of mesogens through the measured order parameters. SLF NMR studies of as many as 24 molecular mesogens that vary in terms of the molecular structure as well as topology are covered in the review. Order parameters of the rings have been estimated from the 13C─1H dipolar couplings in the nematic, smectic A, smectic C, and tilted hexatic phases as well as in B1 and B2 mesophases of various mesogens. It is anticipated that, in the years to come, the 2D SLF method would provide advanced molecular information on structurally complex mesogens that are emerging in liquid crystal science through the incessant efforts of synthetic chemists. The mini review covers the orientational order of topologically variant molecular mesogens determined by 1D and 2D solid-state 13C NMR spectroscopy. Accordingly, rod-like, bent-core, and thiophene mesogens were subjected to 2D SLF measurements to get the order parameters from which the topology was established. The replacement of phenyl ring by thiophene and its influence on order parameters as well as on molecular topology is also discussed.  相似文献   
63.
The composition of fluorescent polymer nanoparticles, commonly referred to as carbon dots, synthesized by microwave-assisted reaction of citric acid and ethylenediamine was investigated by 13C, 13C{1H}, 1H─13C, 13C{14N}, and 15N solid-state nuclear magnetic resonance (NMR) experiments. 13C NMR with spectral editing provided no evidence for significant condensed aromatic or diamondoid carbon phases. 15N NMR showed that the nanoparticle matrix has been polymerized by amide and some imide formation. Five small, resolved 13C NMR peaks, including an unusual ═CH signal at 84 ppm (1H chemical shift of 5.8 ppm) and ═CN2 at 155 ppm, and two distinctive 15N NMR resonances near 80 and 160 ppm proved the presence of 5-oxo-1,2,3,5-tetrahydroimidazo[1,2-a]pyridine-7-carboxylic acid (IPCA) or its derivatives. This molecular fluorophore with conjugated double bonds, formed by a double cyclization reaction of citric acid and ethylenediamine as first shown by Y. Song, B. Yang, and coworkers in 2015, accounts for the fluorescence of the carbon dots. Cross-peaks in a 1H─13C HETCOR spectrum with brief 1H spin diffusion proved that IPCA is finely dispersed in the polyamide matrix. From quantitative 13C and 15N NMR spectra, a high concentration (18 ± 2 wt%) of IPCA in the carbon dots was determined. A pronounced gradient in 13C chemical-shift perturbations and peak widths, with the broadest lines near the COO group of IPCA, indicated at least partial transformation of the carboxylic acid of IPCA by amide or ester formation.  相似文献   
64.
A combined experimental and computational approach was used to distinguish between different polymorphs of the pharmaceutical drug aspirin. This method involves the use of ab initio random structure searching (AIRSS), a density functional theory (DFT)-based crystal structure prediction method for the high-accuracy prediction of polymorphic structures, with DFT calculations of nuclear magnetic resonance (NMR) parameters and solid-state NMR experiments at natural abundance. AIRSS was used to predict the crystal structures of form-I and form-II of aspirin. The root-mean-square deviation between experimental and calculated 1H chemical shifts was used to identify form-I as the polymorph present in the experimental sample, the selection being successful despite the large similarities between the molecular environments in the crystals of the two polymorphs.  相似文献   
65.
The biologically active alkaloid muscimol is present in fly agaric mushroom (Amanita muscaria), and its structure and action is related to human neurotransmitter γ-aminobutyric acid (GABA). The current study reports on determination of muscimol form present in water solution using multinuclear 1H and 13C nuclear magnetic resonance (NMR) experiments supported by density functional theory molecular modeling. The structures of three forms of free muscimol molecule both in the gas phase and in the presence of water solvent, modeled by polarized continuous model, and nuclear magnetic isotropic shieldings, the corresponding chemical shifts, and indirect spin–spin coupling constants were calculated. Several J-couplings observed in proton and carbon NMR spectra, not available before, are reported. The obtained experimental spectra, supported by theoretical calculations, favor the zwitterion form of muscimol in water. This structure differs from NH isomer, previously determined in dimethyl sulfoxide (DMSO) solution. In addition, positions of signals C3 and C5 are reversed in both solvents.  相似文献   
66.
The structure and rotational barrier for the mesityl-silicon bond of 2,2-dimesityl-1,1,1,3,3,3-hexamethyltrisilane have been investigated by 1H- and 13C-variable temperature nuclear magnetic resonance (NMR) as well as by density functional theory structural calculations. The calculations show that the lowest energy structure has C2 symmetry with nonequivalent ortho methyl groups, consistent with the crystal structure and solution NMR. The nonequivalent ortho methyl groups exchange through a Cs transition state with a calculated relative free energy of 11.0 kcal mol−1. The barrier for this rotation found by dynamic NMR is 13.4 ± 0.2 kcal mol−1 at 298 K.  相似文献   
67.
Two new divalent copper (C1) and zinc (C2) chelates having the formulae [M(PIMC)2] (where M = Cu(II), Zn(II) and PIMC = Ligand [(E)-3-(((3-hydroxypyridin-2-yl)imino)methyl)-4H-chromen-4-one] were obtained and characterized by several techniques. Structures and geometries of the synthesized complexes were judged based on the results of alternative analytical and spectral tools supporting the proposed formulae. IR spectral data confirmed the coordination of the ligands to the copper and zinc centers as monobasic tridentate in the enol form. Thermal analysis, UV-Vis spectra and magnetic moment confirmed the geometry around the copper center to be tetrahedral, square pyramidal and octahedral. Study of the binding ability of the synthesized compounds with Circulating tumor DNA (CT-DNA) bas been evaluated applying UV-Vis spectral titration and viscosity measurements. The copper and zinc oxides were achieved from the copper and zinc nano-particles structures Schiff base complexes as the raw material after calcination for 5 hr at 600°C. On the other hand, synthesized of C1 and C2 NPs were used as suitable precursors to the preparation of CuO and ZnO NPs. Finally, the synthesized of the two complexes exhibited enhanced activity against the tested bacterial (Staphylococcus aureus and Escherichia Coli) and fungal strains (Candida albicans and Aspergillus fumigatus) as compared to HPIMC. Among all these synthesized compounds, C1 exhibits good cleaving ability compared to other newly synthesized C2.  相似文献   
68.
Traditionally, due to different hardware requirements, nuclear magnetic resonance (NMR) has developed as two separate fields: one dealing with solids, and one with solutions. Comprehensive multiphase (CMP) NMR combines all electronics and hardware (magic angle spinning [MAS], gradients, high power Radio Frequency (RF) handling, lock, susceptibility matching) into a universal probe that permits a comprehensive study of all phases (i.e., liquid, gel-like, semisolid, and solid), in intact samples. When applied in vivo, it provides unique insight into the wide array of bonds in a living system from the most mobile liquids (blood, fluids) through gels (muscle, tissues) to the most rigid (exoskeleton, shell). In this tutorial, the practical aspects of in vivo CMP NMR are discussed including: handling the organisms, rotor preparation, sample spinning, water suppression, editing experiments, and finishes with a brief look at the potential of other heteronuclei (2H, 15N, 19F, 31P) for in vivo research. The tutorial is aimed as a general resource for researchers interested in developing and applying MAS-based approaches to living organisms. Although the focus here is CMP NMR, many of the approaches can be adapted (or directly applied) using conventional high-resolution magic angle spinning, and in some cases, even standard solid-state NMR probes.  相似文献   
69.
The complex-scaled Green's function(CGF)method is employed to explore the single-proton resonance in 15F.Special attention is paid to the first excited resonant state 5/2+,which has been widely studied in both theory and experiments.However,past studies generally overestimated the width of the 5/2+state.The predicted energy and width of the first excited resonant state 5/2+by the CGF method are both in good agreement with the experimental value and close to Fortune's new estimation.Furthermore,the influence of the potential parameters and quadruple deformation effects on the resonant states are investigated in detail,which is helpful to the study of the shell structure evolution.  相似文献   
70.
A single-polarization filter comprising a gold-coated photonic crystal fiber based on surface plasmon resonance is designed and investigated. The pattern matching and coupled polarization characteristics analyzed by the full-vector finite element method (FEM) and losses at 1,540 nm are achieved to 1,016.01739 dB/cm (x-pol core mode) and 33.81917 dB/cm (y-pol core mode). The crosstalk (CT) value of the 1,540 nm band is ?853.12653 dB for fiber length L=1,000μm and the bandwidth is 850 nm. The working wavelength of the filter ranges from 1,280 nm to 1,540 nm by varying the diameter of outer air holes (d1), the diameter of inner air holes (d4), the metal film thickness (t), as well as the liquid refractive index (n).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号