首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89799篇
  免费   14099篇
  国内免费   6534篇
化学   83015篇
晶体学   1298篇
力学   4694篇
综合类   266篇
数学   9179篇
物理学   11980篇
  2024年   43篇
  2023年   358篇
  2022年   686篇
  2021年   1171篇
  2020年   1680篇
  2019年   3347篇
  2018年   3090篇
  2017年   3825篇
  2016年   4189篇
  2015年   6308篇
  2014年   6331篇
  2013年   8933篇
  2012年   7059篇
  2011年   7027篇
  2010年   5752篇
  2009年   5953篇
  2008年   6092篇
  2007年   5498篇
  2006年   5065篇
  2005年   4788篇
  2004年   4324篇
  2003年   3629篇
  2002年   4089篇
  2001年   2436篇
  2000年   2153篇
  1999年   1226篇
  1998年   599篇
  1997年   544篇
  1996年   565篇
  1995年   522篇
  1994年   483篇
  1993年   337篇
  1992年   355篇
  1991年   212篇
  1990年   172篇
  1989年   163篇
  1988年   176篇
  1987年   137篇
  1986年   108篇
  1985年   92篇
  1984年   97篇
  1983年   34篇
  1982年   84篇
  1981年   106篇
  1980年   120篇
  1979年   122篇
  1978年   99篇
  1977年   73篇
  1976年   64篇
  1973年   32篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
Naphthalimide‐phthalimide derivatives (NDPDs) have been synthesized and combined with an iodonium salt, N‐vinylcarbazole, amine or 2,4,6‐tris(trichloromethyl)‐1,3,5‐triazine to produce reactive species (i.e., radicals and cations). These generated reactive species are capable of initiating the cationic polymerization of epoxides and/or the radical polymerization of acrylates upon exposure to very soft polychromatic visible lights or blue lights. Compared with the well‐known camphorquinone based systems used as references, the novel NDPD based combinations employed here demonstrate clearly higher efficiencies for the cationic polymerization of epoxides under air as well as the radical polymerization of acrylates. Remarkably, one of the NDPDs (i.e., NDPD2) based systems is characterized by an outstanding reactivity. The structure/reactivity/efficiency relationships of the investigated NDPDs were studied by fluorescence, cyclic voltammetry, laser flash photolysis, electron spin resonance spin trapping, and steady state photolysis techniques. The key parameters for their reactivity are provided. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 665–674  相似文献   
72.
The current work utilizes three separate techniques to study the physical aging process in amorphous poly(ethylene furanoate) (PEF), which is a recently introduced engineering thermoplastic with enhanced properties compared to petroleum‐sourced poly(ethylene terephthalate). Differential scanning calorimetry aging experiments were conducted at multiple aging temperatures and times, and the resultant enthalpic recovery values compared to the theoretical maximum enthalpy loss evaluated from calculations involving extrapolation of the equilibrium liquid line. Density measurements reveal densification of the matrix for the aged versus unaged samples, and provide an estimate for the reduction in free volume for the aged samples. Complementary oxygen permeation and pressure‐decay sorption experiments provide independent verification of the free volume reduction mechanism for physical aging in glassy polymers. The current work provides the first detailed aging study for PEF. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 389–399  相似文献   
73.
A sensitive and reliable LC–MS/MS method was developed and validated for simultaneous quantification of the major components of Huangqi–Honghua extact in rat plasma, including hydroxysafflor yellow A (HSYA), astragaloside IV (ASIV), calycosin‐7‐O‐β‐d ‐glucoside (CAG), calycosin, calycosin‐3′‐O‐glucuronide (C‐3′‐G) and calycosin‐3′‐O‐sulfate (C‐3′‐S). After extraction by protein precipitation with acetonitrile and methanol from plasma, the analytes were separated on a Hypersil BDS C18 column by gradient elution with acetonitrile and 5 mM ammonium acetate. The detection was carried out on a triple quadrupole tandem mass spectrometer equipped with electrospray ionization source switched between negative and positive modes. HSYA was monitored in negative ionization mode from 0 to 4.9 min, and ASIV, CAG, calycosin, C‐3′‐G and C‐3′‐S were determined in positive ionization mode from 4.9 to 10 min. The lower limits of quantification of the analytes were 6.25 ng/mL for HSYA, 0.781 ng/mL for CAG and 1.56 ng/mL for ASIV and calycosin. The intra‐ and inter‐assay precision (RSD) values were within 13.43%, and accuracy (RE) ranged from ?8.75 to 9.92%. The validated method was then applied to the pharmacokinetic study of HSYA, ASIV, CAG, calycosin, C‐3′‐G and C‐3′‐S in rat after an oral administration of Huangqi–Honghua extract.  相似文献   
74.
Cycloparaphenylene ([r]CPP) and cyclacene ([r]CA) series are models for short carbon nanotubes. It is shown that armchair edges in model cycloparaphenylenes possess greater aromaticity and cyclic conjugation than do zigzag edges in model cyclacenes. According to Aihara’s bond resonance energy (BRE) and Bosanac and Gutman energy effect (ef) measurements, cycloparaphenylenes are twice as aromatic as cyclacenes. The general solution of all eigenvalues of all members of the cycloparaphenylene series is given. The origin of the recurrence of some eigenvalues are determined.  相似文献   
75.
A reversibly cross‐linked epoxy resin with efficient reprocessing and intrinsic self‐healing was prepared from a diamine Diels‐Alder (DA) adduct cross‐linker and a commercial epoxy oligomer. The newly synthesized diamine cross‐linker, comprising a DA adduct of furan and maleimide moieties, can cure epoxy monomer/oligomer with thermal reversibility. The reversible transition between cross‐linked state and linear architecture endows the cured epoxy with rapid recyclability and repeated healability. The reversibly cross‐linked epoxy fundamentally behaves as typical thermosets at ambient conditions yet can be fast reprocessed at elevated temperature like thermoplastics. As a potential reversible adhesive, the epoxy polymer with adhesive strength values about 3 MPa showed full recovery after repeated fracture‐thermal healing processes. The methodology explored in this contribution provides new insights in modification of conventional engineering plastics as functional materials. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2094–2103  相似文献   
76.
A new asymmetric Salamo‐based ligand H2L was synthesized using 3‐tertbutyl‐salicylaldehyde and 6‐methoxy‐2‐[O‐(1‐ethyloxyamide)]‐oxime‐1‐phenol. By adjusting the ratio of the ligand H2L and Cu (II), Co (II), and Ni (II) ions, mononuclear, dinuclear, and trinuclear transition metal (II) complexes, [Cu(L)], [{Co(L)}2], and [{Ni(L)(CH3COO)(CH3CH2OH)}2Ni] with the ligand H2L possessing completely different coordination modes were obtained, respectively. The optical spectra of ligand H2L and its Cu (II), Co (II) and Ni (II) complexes were investigated. The Cu (II) complex is a mononuclear structure, and the Cu (II) atom is tetracoordinated to form a planar quadrilateral structure. The Co (II) complex is dinuclear, and the two Co (II) atoms are pentacoordinated and have coordination geometries of distorted triangular bipyramid. The Ni (II) complex is a trinuclear structure, and the terminal and central Ni (II) atoms are all hexacoordinated, forming distorted octahedral geometries. Furthermore, optical properties including UV–Vis, IR, and fluorescence of the Cu (II), Co (II), and Ni (II) complexes were investigated. Finally, the antibacterial activities of the Cu (II), Co (II), and Ni (II) complexes were explored. According to the experimental results, the inhibitory effect was found to be enhanced with increasing concentrations of the Cu (II), Co (II), and Ni (II) complexes.  相似文献   
77.
New aromatic (co)polyesters containing pendant propargyloxy groups were synthesized by phase transfer‐catalyzed interfacial polycondensation of 5‐(propargyloxy)isophthaloyl chloride (P‐IPC) and various compositions of P‐IPC and isophthaloyl chloride with bisphenol A. FTIR and NMR spectroscopic data, respectively, revealed successful incorporation of pendant propargyloxy groups into (co)polyesters and formation of (co)polyesters with desired compositions. (Co)polyesters exhibited good solubility in common organic solvents such as chloroform, dichloromethane, and tetrahydrofuran and could be cast into transparent, flexible, and tough films from chloroform solution. Inherent viscosities and number average molecular weights of (co)polyesters were in the range 0.77–1.33 dL/g and 43,600–118,000 g/mol, respectively, indicating the achievement of reasonably high‐molecular weights. The 10% weight loss temperatures of (co)polyesters were in the range 390–420 °C, demonstrating their good thermal stability. (Co)polyesters exhibited Tg in the range 146–170 °C and Tg values decreased with increase in mol % incorporation of P‐IPC. The study of non‐isothermal curing by DSC indicated thermal crosslinking of (co)polyesters via propargyloxy groups. The utility of pendant propargyloxy group was demonstrated by post‐modification of the selected copolyester with 1‐(4‐azidobutyl)pyrene, 9‐(azidomethyl)anthracene, and azido‐terminated poly(ethyleneglycol) monomethyl ether via copper(I)‐catalyzed Huisgen 1,3‐dipolar cycloaddition reaction. FTIR and 1H NMR spectra confirmed that click reaction was quantitative. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 588–597  相似文献   
78.
In this work, we suggest a novel quadratic programming‐based algorithm to generate an arbitrage‐free call option surface. The empirical performance of the proposed method is evaluated using S&P 500 Index call options. Our results indicate that the proposed method provides a more precise fit to observed option prices than other alternative methodologies. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
79.
Functional, degradable polymers were synthesized via the copolymerization of vinyl acetate (VAc) and 2‐methylene‐1,3‐dioxepane (MDO) using a macro‐xanthate CTA, poly(N‐vinylpyrrolidone), resulting in the formation of amphiphilic block copolymers of poly(NVP)‐b‐poly(MDO‐co‐VAc). The behavior of the block copolymers in water was investigated and resulted in the formation of self‐assembled nanoparticles containing a hydrophobic core and a hydrophilic corona. The size of the resultant nanoparticles was able to be tuned with variation of the hydrophilic and hydrophobic segments of the core and corona by changing the incorporation of the macro‐CTA as well as the monomer composition in the copolymers, as observed by Dynamic Light Scattering, Static Light Scattering, and Transmission Electron Microscopy analyses. The concept was further applied to a VAc derivative monomer, vinyl bromobutanoate, to incorporate further functionalities such as fluorescent dithiomaleimide groups throughout the polymer backbone using azidation and “click” chemistry as postpolymerization tools to create fluorescently labeled nanoparticles. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2699–2710  相似文献   
80.
Pyrrolopyrrole aza‐BODIPY (PPAB) developed in our recent study from diketopyrrolopyrrole by titanium tetrachloride‐mediated Schiff‐base formation reaction with heteroaromatic amines is a highly potential chromophore due to its intense absorption and fluorescence in the visible region and high fluorescence quantum yield, which is greater than 0.8. To control the absorption and fluorescence of PPAB, particularly in the near‐infrared (NIR) region, further molecular design was performed using DFT calculations. This results in the postulation that the HOMO–LUMO gap of PPAB is perturbed by the heteroaromatic moieties and the aryl‐substituents. Based on this molecular design, a series of new PPAB molecules was synthesized, in which the largest redshifts of the absorption and fluorescence maxima up to 803 and 850 nm, respectively, were achieved for a PPAB consisting of benzothiazole rings and terthienyl substituents. In contrast to the sharp absorption of PPAB, a PPAB dimer, which was prepared by a cross‐coupling reaction of PPAB monomers, exhibited panchromatic absorption across the UV/Vis/NIR regions. With this series of PPAB chromophores in hand, a potential application of PPAB as an optoelectronic material was investigated. After identifying a suitable PPAB molecule for application in organic photovoltaic cells based on evaluation using time‐resolved microwave conductivity measurements, a maximized power conversion efficiency of 1.27 % was achieved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号